
Lawrence Berkeley National Laboratory
University of Applied Science of Fribourg

Studies of Mechanical Recording Media

with 3D Surface Profiling Methods:

Data Collection and Analysis

Noé Lutz, Michel Yerly

Project type Diploma project 2005
Computer Science Department
EIA-FR
University of Applied Science of Fribourg

Students Noé Lutz, Michel Yerly

Supervisors Carl Haber, Vitaly Fadeyev

Responsible professors Frédéric Bapst, Ottar Johnsen and
Béat Hirsbrunner

Work place Lawrence Berkeley National Laboratory
California
USA

Start/end dates 15.08.2005/ 23.10.2005



Contents

1 Introduction 6
1.1 An optical reading system . . . . . . . . . . . . . . . . . . . . . . 6

1.1.1 The 2D scanner . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.2 The 3D scanner . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Achieved work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Report organization . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Task List 9
2.1 Getting started . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Record sample sounds . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Data acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Data visualization . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.1 GUI and 3D environment . . . . . . . . . . . . . . . . . . 10
2.4.2 2D & 3D display . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5.1 Data quality check . . . . . . . . . . . . . . . . . . . . . . 11
2.5.2 Algorithm for groove tracking . . . . . . . . . . . . . . . . 11
2.5.3 Bad regions correction . . . . . . . . . . . . . . . . . . . . 11
2.5.4 Geometric correction . . . . . . . . . . . . . . . . . . . . . 11
2.5.5 Transfer function and filters . . . . . . . . . . . . . . . . . 11
2.5.6 Resampling . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.6 Schedule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Data Acquisition 13
3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Color-Coded Confocal Probe . . . . . . . . . . . . . . . . 15
3.1.2 Motion stages . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.3 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.4 Complete Picture . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Measurement Processes . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.2 Acquisition Software . . . . . . . . . . . . . . . . . . . . . 21

3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2



4 Data Analysis Process 24
4.1 Data Quality Check . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1.1 Confocal probe . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1.2 Trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1.3 Linear motion stage . . . . . . . . . . . . . . . . . . . . . 25

4.2 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2.1 Measurement errors . . . . . . . . . . . . . . . . . . . . . 26
4.2.2 Warpage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3 Groove Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.1 Fit Parabola . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.2 Fit Circle Shape . . . . . . . . . . . . . . . . . . . . . . . 31
4.3.3 Repeated Fit . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4 Data Post-Processing . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4.1 Silence Generation . . . . . . . . . . . . . . . . . . . . . . 32
4.4.2 Z Shift Detection . . . . . . . . . . . . . . . . . . . . . . . 33

4.5 Filtering and Resampling . . . . . . . . . . . . . . . . . . . . . . 33
4.5.1 Resampling . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Study of a Dictation Belt Recorder 35
5.1 Sound Samples Recording . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2.1 Playback Pickup . . . . . . . . . . . . . . . . . . . . . . . 35
5.2.2 Recording Pickup . . . . . . . . . . . . . . . . . . . . . . . 36
5.2.3 Speaker Output . . . . . . . . . . . . . . . . . . . . . . . . 38

6 Software 40
6.1 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.1.1 Needs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.1.2 Programming Language . . . . . . . . . . . . . . . . . . . 40
6.1.3 Graphic API . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.1.4 Math and DSP Library . . . . . . . . . . . . . . . . . . . 41
6.1.5 Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.1.6 Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.2 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.2.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.2.2 Concurrent Programming in C# . . . . . . . . . . . . . . 42
6.2.3 3D View of the Surface . . . . . . . . . . . . . . . . . . . 45
6.2.4 Information Exchange . . . . . . . . . . . . . . . . . . . . 50

6.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.3.1 Class Diagram . . . . . . . . . . . . . . . . . . . . . . . . 51
6.3.2 Interfaces Description . . . . . . . . . . . . . . . . . . . . 51
6.3.3 Classes Description . . . . . . . . . . . . . . . . . . . . . . 52

6.4 Issues and Known Bugs . . . . . . . . . . . . . . . . . . . . . . . 58
6.4.1 Device Lost Exception . . . . . . . . . . . . . . . . . . . . 58
6.4.2 Out of Memory Exception . . . . . . . . . . . . . . . . . . 58
6.4.3 Incomplete Surface . . . . . . . . . . . . . . . . . . . . . . 58

6.5 Future . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.5.1 Gramophonic Records . . . . . . . . . . . . . . . . . . . . 58
6.5.2 Phonographic Cylinders . . . . . . . . . . . . . . . . . . . 59
6.5.3 Phonographic Records . . . . . . . . . . . . . . . . . . . . 59

3



6.5.4 Stereophonic Records . . . . . . . . . . . . . . . . . . . . 59

7 Tests and results 64
7.1 Signals Comparision . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.2 Measurement Quality . . . . . . . . . . . . . . . . . . . . . . . . 66
7.3 Sound Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.4 Processing Time . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

8 Conclusion 68

9 Acknowledgements 69

A Groovster User guide 71
A.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

A.1.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . 71
A.1.2 Microsoft .NET Framework . . . . . . . . . . . . . . . . . 71
A.1.3 Microsoft DirectX 9 . . . . . . . . . . . . . . . . . . . . . 71
A.1.4 National Instrument Measurement Studio . . . . . . . . . 72
A.1.5 Groovster . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

A.2 Using Groovster . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
A.2.1 Analyzers . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
A.2.2 GUIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
A.2.3 Measurement Accessors . . . . . . . . . . . . . . . . . . . 74
A.2.4 Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

A.3 Adding New Features . . . . . . . . . . . . . . . . . . . . . . . . 77
A.3.1 Adding an Analyzer . . . . . . . . . . . . . . . . . . . . . 77
A.3.2 Adding a Graphic User Interface . . . . . . . . . . . . . . 79
A.3.3 void StartGui() . . . . . . . . . . . . . . . . . . . . . . . . 80
A.3.4 Adding a Measurement Accessor . . . . . . . . . . . . . . 80

B Class Diagrams 83
B.1 Binaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
B.2 Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
B.3 Part Class Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . 84

C Notes on the 3D engine 94
C.1 DirectX 9 3D Pipeline . . . . . . . . . . . . . . . . . . . . . . . . 94
C.2 Frustum culling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

D Study of Gramophone Records 98

E Noise Measurement 100
E.1 Static Confocal probe . . . . . . . . . . . . . . . . . . . . . . . . 100
E.2 Moving Confocal probe . . . . . . . . . . . . . . . . . . . . . . . 101

F Data Acquisition File Format 103

4



G File Listing 104
G.1 LabView Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

G.1.1 Data Analyzer . . . . . . . . . . . . . . . . . . . . . . . . 104
G.1.2 Output Sine Waves . . . . . . . . . . . . . . . . . . . . . . 104
G.1.3 Output Swept Sines . . . . . . . . . . . . . . . . . . . . . 104
G.1.4 Signal Acquisition With Sound Card . . . . . . . . . . . . 105
G.1.5 Compare Signals . . . . . . . . . . . . . . . . . . . . . . . 105
G.1.6 Sound Filtering and Wav Generation . . . . . . . . . . . . 105
G.1.7 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . 105
G.1.8 Additional VI’s . . . . . . . . . . . . . . . . . . . . . . . . 106

G.2 Optical Measurement Files . . . . . . . . . . . . . . . . . . . . . 106
G.2.1 Men Talking 12.6KHz . . . . . . . . . . . . . . . . . . . . 106
G.2.2 High Amplitude Sine Waves . . . . . . . . . . . . . . . . . 107
G.2.3 Lower Sine Waves at 25.2KHz . . . . . . . . . . . . . . . 107
G.2.4 High Sampling Frequency . . . . . . . . . . . . . . . . . . 107
G.2.5 High Sampling Frequency Lower Gain . . . . . . . . . . . 108
G.2.6 High Sampling Frequency Lower Gain . . . . . . . . . . . 108
G.2.7 High Sampling Frequency Lower Gain . . . . . . . . . . . 109
G.2.8 Men Talking 50.4kHz First Try . . . . . . . . . . . . . . . 109
G.2.9 Men Talking 50.4kHz Second Try . . . . . . . . . . . . . 110

G.3 Needle and Speaker Measurement . . . . . . . . . . . . . . . . . . 110
G.3.1 Recording Needle . . . . . . . . . . . . . . . . . . . . . . . 110
G.3.2 Playback Needle . . . . . . . . . . . . . . . . . . . . . . . 111
G.3.3 Speaker output . . . . . . . . . . . . . . . . . . . . . . . . 111

H Dictation Belt Machine Schematics 112

5



Chapter 1

Introduction

Some time ago, audio recordings were stored on mechanical supports such as
the very widespread phonographic record.

The playback from theses media is produced by the movement of a stylus
running inside a groove. This movement is often changed into an electrical
signal, which can then be amplified by an amplifier before being turned to
sound by a speaker.

Different optical reading methods have been investigated in the past to re-
construct the sound of such mechanical supports [1], [2], [3].

1.1 An optical reading system

Some important recordings were archived and may nowadays not be read by
a standard device because the simple contact of the stylus could irreversibly
damage the sound data. Therefore, an alternative method was developed, that
consists of reading the audio data by an optical process which avoids any physical
contact with the support. Different optical methods were designed to retrieve
the sound information of mechanical supports. This section tries to show the
different approaches presented in [1], [2] and [3].

1.1.1 The 2D scanner

The two-dimensional scanning process consists of acquiring, a two dimensional
high-resolution monochromatic picture of the support using specially designed
hardware. Each pixel of the picture will provide information about the slope
of the corresponding location on the medium: the steeper the point, the darker
the pixel will be.

Visual Audio Project

The Visual Audio project, which is being developed at the University of Ap-
plied Science of Fribourg in Switzerland, aims to retrieve audio data from old
phonographic records that are damaged due to chemical exudation of the plas-
ticizer used in the lacquer transcription discs. Because of the fast degradation
of these records, people who are working on this project take high-resolution
photographs of them, which is considered to be a good archiving method.

6



The photograph is then scanned with a specifically designed machine and
some image processing is applied to retrieve the sound. The main goal of this
project is to save these old records before they become unreadable. This means
that the speed of sound extraction is more important than the audio quality of
the result. Currently the sound extraction is close to real-time, which means
that the processing duration of a whole record is almost equal to the length of
the audio track stored on it.

I.R.E.N.E.

This project, which is being developed at Lawrence Berkeley National Labora-
tory is similar to the Visual Audio project. The noticeable difference is that
the phonographs are scanned directly. A co-axial illumination is used. The
brightness of the pixel depends upon the slope but the pixel brightness does is
not linearly depended upon the slope. Once the slope is greater than zero the
pixel goes dark, which is good for the edge detection used to locate the grooves.

1.1.2 The 3D scanner

The three-dimensional scanning method works almost the same as the two-
dimensional one. It differs only in the way of measuring the different points
on the surface of the medium. Instead of measuring the slope of each point, it
accurately measures their depth. This results in a heights map representing the
surface of the scanned medium. After the data is acquired, some mathematical
methods are applied to simulate the stylus displacement.

This method was applied to reconstruct sound from an Edison cylinder at the
Lawrence Berkeley National Laboratory ( [2]). Edison cylinders have vertical
groove modulation compared to phonographic records that have lateral groove
modulation. In order to achieve a reasonable signal quality when reading such
media, a 3D imaging method is required.

1.2 Goal

Dictation belts are one of the mechanical supports for audio recordings that
were used mainly to record voice. They replaced the dictation cylinders, that
were previously used during the 1940’s due to their more convenient size. In
fact, dictation belts can be folded and put in a folder for storage. Dictation
belts were used from the 1950s 1970s mainly for office letter dictation and legal
testimony recording. They were also used by the US Government to monitor
certain phone conversations. US Presidents Kennedy and Johnson recorded
their private conversations on these belts. In 1963 the Dallas, Texas police
department used these belts to record radio communications.

A dictation belt consists of a rectangle of acetate-type soft-surface material
that looks like a film and loops back on itself as shown in Figure 3.1. The sound
was embossed onto the surface of the belt by a needle.

7



1.3 Achieved work

This project gave rise to Groovster, a powerful software that can be used to
analyze the dictation belts and extract the sound from them with a quality close
to what is restituted by the speaker of the dictation belt player. The software is
very easily extendable to analyze other kinds of media such as Edison’s cylinders
or grammophonic records. The whole study about the dictation belts and the
grammophinc records was part of this project and is ready to be used for the
next projects.

There are two reasons for which the work on this project has been slightly
differently focused than the way it is described in the tasklist. Reorganizing the
work was not a that hard because it is a research project and it will eventually
be continuated later.

The first reason was that the dictation belt recorder machine did not behave
the expected way. Instead of passing the waves to a simple transfer function, it
introduced harmonic distortion. That is why it was taken apart and analyzed
in more details.

The second reason is that resources had to be put on correcting measurement
errors that were present in the data file, instead of fixing dust or scratches.
The measurement errors were introduced by the fact that dictation belts are
translucent and also by the fact that the lamp used for the confocal probe was
loosing its intensity due to its known lifetime limits.

1.4 Report organization

This report is split in 9 chapters including this one and 9 appendices. The first
chapter is an introduction to this project whereas the second one shows the
submitted task list. The third chapter explains all the data aquisition and the
fourth the data analysis process. In the fifth chapter a dictation belt recorder
machine is studied. The sixth one is all about the software ”Groovster” that
was created for this project. The tests and result obtained are presented in
chapter seven whereas the conclusion is in the eighth chapter. Finally come the
acknowledgements as chapter nine. In the appendices you can find the user guide
and the class diagrams for Groovster, information about its 3D engine, a part
of the study of the grammophone records, noise measurement, data acquisition
file format, a listing of the provided files, the schematic of the dictation belt
machine and some scanner hardware specifications.

8



Chapter 2

Task List

This chapter describes the objectives set for this project and what tasks need to
be accomplished in order to achieve it. The main goal is to be able to reconstruct
recorded sound from dictation belts and to show that a reasonable quality can
be achieved using a three-dimensional optical surface metrology method. This
metrology method consist of scanning the surface of the mechanical support
using optical probes, similar to the ones described in [1] and [2]. This principal
objective can be separated into several stages:

1. Getting started

2. Record sample sounds

3. Data acquisition

4. Data visualization

5. Data analysis

These tasks do not have to be executed in the order above; see section 2.6
for a description of the planned schedule. In the following sections, the above
tasks are detailed.

2.1 Getting started

During the first days of work the goal is to get familiar with the hardware and
the software used by the 3D-scanner. The 3D scanner has been used to scan
Edison cylinders before. Understanding the measurement process and learn
to code using Labview will be some good tasks to work on. LabView is the
programming language chosen by Carl Haber to control the whole hardware,
i.e. the motion controller and the probe, and to perform the data acquisition.

2.2 Record sample sounds

The main goal of this project is to extract the best possible sound quality from
dictation belts. To achieve this goal, understanding the way the dictation belt
recorder affects the sound signal in order to apply a proper equalization to the

9



signal has to be done. Some sound samples generated by a special sound analysis
hardware will be recorded on an empty dictation belt. This belt can then be
read with the 3D-scanner and the resulting sound wave can easily be compared
with the original sound. These experiments will help to measure the amount of
noise present on the medium as well as the signal-to-noise ratio.

2.3 Data acquisition

In order to acquire data from the dictation belts, the hardware first need to
be adapted, hardware configuration and stage setup to them. Then a Labview
program is needed to control the scanner’s servomotors, to read the data that
comes from the confocal probe, and eventually to write the acquired data to a
file.

2.4 Data visualization

The data visualization is the main graphical user interface to analyze the data.
It displays the acquired data and gives the user an idea of the groove shape. It
is designed to help debugging and to tune some parameters used in the data
analysis.

2.4.1 GUI and 3D environment

The data analysis program will have a graphical user interface where the user
can tune various parameters and look at the groove shape. The groove will be
displayed in both 2D and 3D. This task consists basically of creating the main
window of the analysis program and setting up a 3D environment, which will
allow to draw the shape of the groove in three dimensions.

2.4.2 2D & 3D display

The idea of the 3D display is to show a portion of medium surface in three
dimensions and to allow the user to rotate the point of view around the surface
in order to get a qualitative idea of the data. The 3D display has to be able
to create a three dimensional surface given the points acquired during the data
acquisition and to draw it. A two dimensional plot of the recorded points will
give the user a more precise view. These two views will be very helpful to find
errors in the data, such as dust or scratches, and to understand how these errors
affect the data analysis.

2.5 Data Analysis

After the data is read from the medium, it has to be analyzed in order to
reconstruct the sound. The goal of this task is to identify the groove, measure
its displacement in time, and to apply various corrections on the resulting signal.
This task has been split into the following ”sub-tasks”.

10



2.5.1 Data quality check

The measuring process needs to be validated before analyzing the acquired data.
In order to do this a program has to be written either in Labview or another
programming language that takes as an input the file that contains acquired
data, and tells the user some statistics about the quality of the acquired data.
The program would have to compute, for example, the percentage of badly
measured points or to show the groove geometry.

2.5.2 Algorithm for groove tracking

This algorithm takes as an input a ”landscape” (h(x, y)) and produces as an
output a waveform (A(t)). It has to find the groove of the scanned medium and
determine the movement that a playback stylus would have made playing the
medium.

2.5.3 Bad regions correction

If the medium is damaged or if there is dust on it, the analysis process might be
able to detect this and possibly correct the defects. Measurements errors can
also be corrected.

2.5.4 Geometric correction

Some geometric correction might be applied to the data to avoid signal dis-
tortion. Such distortions could arise if the dictation belt is warped or if, for
example, the stage is not perfectly aligned during the measurement.

2.5.5 Transfer function and filters

Once the sound is extracted from the media, it has to be manipulated so that
it resembles the original recorded sound as closely as possible. For this reason
a study of the transfer function of a real dictabelt recorder using the sound
samples previously recorded has to be performed. Once this function has been
studied the inverse of this transfer function has to be applied to the extracted
sound.

2.5.6 Resampling

Depending on the quality of scanned data, a lower or higher number of samples
than what should be written in the target sound file will probably be obtained.
Therefore the sound signal has to be resampled to a standard computer sound
frequency.

2.6 Schedule

Figure 2.1 lists all the tasks with the estimated time investment for each task.

11



Week

Getting started

Data acquisition

Data quality check

Software architecture

GUI and 3D environment

File import Y

2D & 3D display

Record sample sounds

Algorithm for groove tracking
0 0 0 0

Bad region correction
0 0

Geometric correction

Transfer function and filters L

Resampling Y

Report writing

Log book writing

L:Lutz Y:Yerly

L

L & YL & Y

L & Y

L

Y

Y

L & Y

3

L & Y

Y

L & Y

L

8 9 10

L & Y

4 5 6 71 2

Figure 2.1: Schedule.

12



Chapter 3

Data Acquisition

3.1 Methodology

Sound extraction from mechanical sound carriers using 2D and 3D imaging
methods has already been studied in the past [1], [3]. Particularly relevant to
this project is the work that has been done previously in this lab to scan Edison
cylinders using a 3D imaging technique [2].

In this work, 3D metrology is used to measure the surface structure of dicta-
tion belts. Dictaphone belts, also called dictation belts, are made of soft blueish
plastic as shown in Figure 3.1. Sound is embossed in the material using a needle.
The groove on these dictation belts is approximately 60µm wide but only 3µm
deep, which makes it a very flat groove compared to gramophone records for
example. The sound is encoded in the lateral movement of the groove. There
are two different dictation belts: 15min and 30min dictation belts. The ones
used in this project are 15min belts.

Figure 3.1: Mechanical recording medium of interest: dictation belt.

An example of the 3D structure measured using this technique is shown in
Figure 3.2, and a cross-section of this data set is shown in Figure 3.3. Note
that the two axes in Figure 3.3 are not on the same scale at all; the groove

13



is indeed flatter in reality. This data acquisition technique extracts basically
a detailed map of the surface structure, making it possible to mathematically
simulate the movement a stylus would have made if the belt had been played
with a conventional dictation belt machine.

Figure 3.2: Measured surface structure of a dictation belt using 3D imaging
techniques.

The 3D surface is obtained by measuring heights point-by-point using a
color-coded confocal microscope. The confocal probe is moved in a controlled
manner over the surface being measured, creating the height map shown in
Figure 3.2.

In order for this technique to be viable, the resolution and accuracy of the
measurement process have to be good enough to sense the smallest undulations
on the medium surface caused by the sound. Several measurement parameters
can also influence the quality of the sound extraction such as the spacing between
the measurement points along the dictation belt axis as well as along the groove
direction. The point spacing along the groove direction gives the sampling
frequency of the optical playback. The point spacing along the dictation belt
axis, on the other hand, contributes to the accuracy with which the groove profile
geometry and position can be approximated at any given time. Furthermore, the
noise added by the measurement process must be kept low enough to maintain
a reasonable signal-to-noise ratio.

The following sections explain how the measurement hardware works and
how it is set up.

14



3.1.1 Color-Coded Confocal Probe

The basic concept of color-coded confocal microscopy [5] is show in Figure 3.4.
A polychromatic pin-hole light source is used. The tiny light spot goes though
a lens with exaggerated chromatic aberration before it is directed to the surface
to measure. Because of the lens, each wavelength, i.e. color, comes into focus at
a different depth. The light reflected by the surface is measured and analyzed
by a spectrometer to find the wavelength that is in focus. This device works
basically as peak detector, since the intensity of the wavelength that comes into
focus on the surface will be the highest in the reflected signal.

The bright xenon light source inputs its signal into the high resolution optical
sensor (CHR), that sends it to the confocal probe. When the light is reflected
back from the surface to measure into the high resolution optical sensor, the
difference between the two spectra is computed, i.e. the input and output
spectrum, and the wavelength that has the highest intensity is measured. From
the calculated wavelength, the distance between the probe and the surface can
be computed. The accuracy of the measurement is typically around 100nm in
a range of approximately 330µm.

In its the default configuration, the CHR is configured to measure the dis-
tance between the probe and the surface of the medium. This configuration
does not work for dictation belts because they are transparent. The CHR gets
confused when both surfaces, the top and the bottom of the belt, are within the
330µm range of the probe. There is a second measuring mode that measures
the thickness of transparent materials. The thickness of the dictation belt is not
directly interesting, but in this mode the distance of both surfaces is measured
and only the distance to the first (closest) surface is used.

The confocal probe rate is the number of points the probe measures per
second. This value can be set between 33Hz and 4kHz. The exposure time for
a measurement is given by the inverse of the frequency. The time between two
measurements is considered to be negligible.

The CHR is connected to a computer via two serial links. One is used to send
commands to the CHR and the other port is used to read out the measured data.
Every distance measurement is encoded over 5 ASCII characters and send to the
data channel. The five characters correspond to a numerical value in hundreds
of µmn. For example, the value ”23159” means 231.59µm. At the end of each
measurement a carriage return and a line feed character are sent (CRLF). The
command channel is used to configure the CHR parameters such as the number
of measurements per second.

The CHR can be put in a standby mode in which it waits for an external
trigger signal. While in standby mode, also called ”waiting for trigger” mode,
the CHR does not sending any data. As soon as the CHR receives a TTL trigger
signal, it resumes the transmission of measurements with a response time of
about 10 microseconds. This feature is used to synchronize the measurements
with the moving linear stage, which is explained later.

Table 3.1 lists the characteristics of the confocal probe used.

3.1.2 Motion stages

When scanned, the dictation belt is put around a metallic cylinder that has a
slightly smaller radius than that of the dictation belt. The metallic cylinder is

15



222

223

224

225

226

227

228

229

230

231

232

1700 1750 1800 1850 1900 1950 2000 2050

Position in micrometers

H
e
ig

h
t 

in
 m

ic
ro

m
e
te

rs

Groove width

G
ro

ov
e 

h
ei

g
h
t

Figure 3.3: Cross-section of measured surface showing two grooves.

Figure 3.4: Basic concept of color-coded confocal microscopy. The lens at position

L has a large chromatic aberration causing the three wavelength shown to focus at

different depths. Figure is courtesy of STIL SA, used by permission.

16



Table 3.1: Color-coded confocal probe characteristics.

Name Value
Manufacturer STIL SA (France)
Probe Model STIL CHR 450
Measurement Range 350µm
Sampling Frequency 33Hz − 4000Hz
Vertical Resolution 10nm
Vertical Accuracy 100nm
Trigger Response Time 10µs

mounted onto a rotational motion stage. The confocal probe, is mounted onto
a linear motion stage. Figure 3.5 shows the overall setup of the measurement
hardware without the motion controller, which is in the computer.

Both the rotational stage as well as the linear stage are controlled by DC
servo motors and read out by linear encoders. These two servo motors are con-
trolled by a motion controller which is in the PC. Both stages have a control loop
similar to a PID controller in order to achieve higher accuracy. The resolution
of the linear stage is 10nm and its accuracy is around 0.4µm.

3.1.3 Data Collection

The data measured from the confocal probe is sent over a serial link to a PC
where the data acquisition software stores the data in a binary file.

3.1.4 Complete Picture

Figure 3.6 shows the whole hardware setup needed for the measurements. On
the left, the motion controller is responsible to move the confocal probe, shown
in the picture on the right, in a controlled way over the whole surface of the dic-
tation belt in order to obtain the expected height map. The PC also commands
the CHR by sending it a trigger signal whenever data needs to be measured.
Measured data is sent from the CHR to the DAQ software which runs on the
same PC as the motion controller over a serial link. As descibed in Subsec-
tion 3.1.1 the light spot generated by the bright light source goes first into the
CHR and then to the confocal probe.

3.2 Measurement Processes

3.2.1 Introduction

The previous sections describe how the confocal probe is mounted onto a linear
motion stage and how the dictation belt is fixed on a metallic cylinder on the
rotational stage. As a matter of convention, the linear stage motion direction
parallel to the dictation belt axis is referred to as the lateral direction. The mo-
tion direction of the rotational stage along the grooves is referred to as temporal
or azimuthal direction.

17



1

2
3

4

Figure 3.5: Overall setup of the measurement hardware. 1. is the confocal probe,

2. is the rotational stage and encoder, 3. is the dictation belt mounted onto a aluminum

cylinder and 4. is the linear stage and encoder. The red arrows show the motion of

the rotational and linear stage.

18



Light source

Motion controller and
DAQ software

Measuring device (CHR)

Optical Fiber

Serial links Trigger signal

Optical Fiber

Figure 3.6: Complete picture of the hardware setup.

19



As a result of a dictation belt measurement, a hight map that contains
heights for different lateral and temporal positions is generated. The general
scanning strategy is to measure surface heights while the confocal probe is mov-
ing laterally along the dictation belt axis. After every lateral scan, the rota-
tional stage position is incremented in azimuthal direction by a certain angle.
The points acquired during a scan in the lateral direction will be called a slice.
A partial slice was shown in Figure 3.3. The sampling interval along the az-
imuthal direction depends upon the needed audio sampling frequency. In the
lateral direction, the sampling interval needs to be chosen such that the num-
ber of points suffices to determine the groove shape and more importantly its
position.

Since the confocal probe is moving while measuring data, the sensor will
average the measurement over an elongated region in the lateral direction. The
size of that region over which the measurement is averaged is dependent on the
spot size of the confocal probe, the velocity of the linear stage, and the sampling
frequency of the probe.

The distance between measurement points in the lateral direction has to
be small enough to capture the irregular shape of the groove cross section in
order to be able to properly identify the groove. By fitting the groove shape
to a certain number of points the point noise level of 100nm is averaged over
the considered points. The smaller the distance between measurement points,
the more points can be used in the fit, which reduces the noise added by the
measurement process. For the measurement of dictation belts, a spacing of
5µm between points in the lateral direction is chosen. Since the groove width is
approximately 60µm, thirteen measurement points can be used to approximate
the groove shape.

In the temporal direction the sampling frequency has to be at least twice the
highest frequency recorded on the dictation belt to meet the Nyquist require-
ment and avoid aliasing. The dictation belt player and recorder has a frequency
range going from approximately 120Hz to 5kHz, which means that the sam-
pling frequency has to be at least 10kHz. By using a higher sampling frequency,
errors in the sound wave can easily be corrected without audible changes due
to the redundancy of information. The audio sampling frequency is given by

fs =
num angular increments · r.p.m.

60
. (3.1)

Dictation belts rotate at 42 rotations per minute, which is relatively slow.
Because of this slow rotation speed, the number of angular steps for a whole
revolution has to be accordingly high to achieve a reasonable audio sampling
frequency. Different sampling frequencies are considered: 12.6kHz, 25.2kHz
and 50.4kHz. The choice is dependent on the desired quality and the time
available for the entire scan.

For dictation belts, the sampling rate of the confocal probe was either 1kHz
or 2kHz. At higher frequencies, the number of errors increases because the
intensity of the reflected light is too low (see Chapter E). At lower frequencies,
it would take too much time to scan a reasonable portion of the dictation belt.
It takes about 50 hours to measure 5mm in the lateral direction (about 40
grooves) with a sampling frequency of 50.4kHz, a lateral point spacing of 5µm,
and a confocal probe rate of 2kHz. This scan corresponds to about one minute of
sound. Since this scanning method is really time consuming, there is an apparent

20



tradeoff between the sampling rate, sampling frequency, and the quality of the
measurement.

3.2.2 Acquisition Software

The whole data acquisition software was implemented using LabView from Na-
tional Instruments. LabView is a graphical development environment partic-
ularly designed to run measurements and to create control applications. The
motion controller hardware that controls both stages comes with LabView li-
braries to control it. Additionally, this laboratory has a lot of experience with
this tool which is why LabView is used for data acquisition in this project.

Before a measurement can be run, the user has to set a certain number of
parameters:

Name Unit Description
φstart

◦ Initial position of the rotational stage.
∆φ ◦ Angular increment of the rotational

stage between two slices.
numφsteps 1 Number of angular steps.
rinit mm Initial position for linear stage.
rstart mm Starting measurement position of linear stage.
rdistance mm Distance to measure along the axis.
∆r µm Spacing between two measurement points.
probe rate Hz Confocal probe rate.

These parameters are described below as they are used in the measurement
process. The measurement process implemented in LabView to acquire data
from dictation belts looks like this:

1 Read user de f i ned parameters .
2 Write header in to the output f i l e .
3 I n i t i a l i z e motion con t r o l groups .
4 Conf igure con f o ca l probe .
5 Move r o t a t i o n a l ax i s to s t a r t i n g po int ( $\ ph i { s t a r t }$ ) .
6 Set the v e l o c i t y o f the l i n e a r s tage ( $v { r }$ ) .
7 Setup the output t r i g g e r on the l i n e a r s tage used to
8 s t a r t measurements .
9 foreach $\phi$

10 {
11 Move l i n e a r s tage to i n i t i a l p o s i t i o n ( $ r { i n i t }$ ) .
12 Put the con f o ca l probe in to
13 t r i g g e r mode ( wai t ing for t r i g g e r ) .
14 Sta r t the movement o f the l i n e a r s tage .
15 Read the data from the probe .
16 Write data to the f i l e .
17 Move r o t a t i o n a l ax i s by $\Delta \phi$ .
18 }
19 Close output f i l e .

At the beginning of the measurement process, all user-defined parameters
are read. A header with the scanning parameters is then written to the output
data file. See Appendix F for more details on the data acquisition file format.
The motion controller then initializes the two motion axes, i.e. the linear and

21



the rotational stage. The sampling frequency of the confocal probe is set at the
value chosen by the user. Both 1000Hz and 2000Hz have been used as sampling
frequencies. Once this is done, the rotational axis moves to the φstart position.
Usually φstart is chosen to be zero. The software then sets the velocity as well
as the acceleration for the linear stage. The velocity of the linear stage is given
by the distance between two measurements and the confocal probe rate. It can
be computed as follows:

vr = probe rate · distance between two measurement. (3.2)

For a probe rate of 2000 measurements a second and a distance of 5µm
between two measurements, the velocity of the linear stage would be set to
vr = 2 · 103 · 5 · 10−6 = 10 · 10−3 = 10mm/s. After the speed has been set,
the software configures the trigger that is sent to the confocal probe and tells it
when to take data. The trigger is configured to fire whenever the linear stage is
moving within two boundaries that are given by the starting position rstart and
the scanning distance rdistance along the dictation belt axis. Since the distance
between two measurement points is considered as constant, the velocity of the
linear stage has to be constant while the confocal probe is taking data. The
linear stage therefore starts its movement at rinit and the measurement at rstart.
The distance between rinit and rstart is typically chosen to be 10mm which is a
safe distance for the linear stage to reach constant velocity. Once the trigger has
been set, the main acquisition loop is entered. The main loop is repeated for the
number of steps indicated by the user. At each step, the linear stage is moved
to rinit. The confocal probe is then set into the trigger mode where it waits
for an incoming signal to start measuring. When the linear stage crosses rstart,
the trigger signal is sent to the confocal probe. As soon as the trigger signal
is received, the confocal probe starts to acquire measurement points. Data is
acquired from the serial port of the PC connected directly to the confocal probe
and written in the SGL format to the output file. At the end of the loop, the
rotational axis is moved by ∆φ for the next slice. Once all slices have been
measured, the data file is closed and the acquisition software terminates.

3.3 Discussion

The measurement range of the confocal probe is supposed to be around 330µm.
Unfortunately, if transparent surfaces are measured, such as the surface of dic-
tation belts, certain wavelength are refracted. In the case of the dictation belt,
wavelengths in the blue region get refracted. If the dictation belt surface is at
a certain distance from the confocal probe where blue is the wavelength that is
supposed to be in focus on the surface, practically no light is reflected, which
leads to measurement errors. This phenomenon reduces the measurement range
of the confocal probe. A small range of about 80µm has shown good measure-
ment results. The problem is that the metallic cylinder that holds the dictation
belt is not a perfect cylinder. It is difficult to keep the surface in range for the
whole measurement. One solution could be to install a system similar to an
auto-focus that would detect when a slice is outside the range and correct the
position of the probe. An additional axis would be needed for this purpose.
Another, easier way would be to scan the belt in three or four runs, stop the
measurement, realign the probe when needed, and continue the measurement.

22



In the present case, this was not too much of an issue since the belt had a rel-
atively even surface. It could become an issue if older belts were scanned that
would not be as even, for example because they were folded for storage.

23



Chapter 4

Data Analysis Process

The goal of the data analysis process is to extract the groove displacement from
the acquired data and to eventually create its sound equivalent. As mentioned
in Section 3.2, the data are acquired in slices along the dictation belt axis.
The data are basically processed in the same way as the belt is scanned, i.e.
slice per slice, although more than one slice might be considered simultaneously
depending on the task.

Before the actual data analysis process is described, the first section of this
chapter covers the quality of the acquired data. The whole data analysis process
has been divided into four different steps. The first step, called data preprocess-
ing, detects and corrects measurement errors that occur during data acquisition.
It also corrects some of the geometrical distortion the dictation belt might have.
The second step of the data analysis process detects the groove position and ex-
tracts its movement in time. Different groove tracking approaches are considered
and compared. The extracted groove positions have to be linked together in or-
der to form a signal sequence in time, which is also part of the groove detection
step. In the third step, called data post-processing, error detection and correc-
tion is applied to the signal to remove clicks and lower noise. In the last step
of the data analysis process the signal is filtered, resampled, scaled and written
into a wav file. The complete data analysis process is illustrated in Figure 4.1.

DAQ Data Pre-
Processing

h[x,y] Groove 
Detection

h'[x,y] Data Post-
Processing

x[t] Filtering &
Resampling

x'[t]
Wav

Data Analysis Process

Figure 4.1: Complete data analysis process.

4.1 Data Quality Check

A first data quality check was done by implementing a preliminary version of the
data analysis process in LabView. This tool validated the measurement process

24



and showed that the quality of the data was at least reasonable since a male
voice present on the output sound file could easily be understood. This result
suggested that there were no major quality issues either in the measurement
process or in the data analysis process.

In order to monitor and measure the performance of the data analysis pro-
cess, it is crucial to determine the various sources of error and noise in the mea-
surement process. Four sources of errors are considered: The confocal probe,
the linear motion stage, the rotational stage, and the synchronization trigger.

4.1.1 Confocal probe

Repeated measurements of the same location on a dictation belt were conducted
at different probe rates. For these measurements the linear stage as well as the
rotational stage were not in motion. In this case, the only noise source is the
confocal probe. Different measurements show that the noise level increases with
the sampling rate of the confocal probe and also that it is lower on flat surfaces
compared to surfaces with a certain slope. See Section E.1 for details on these
measurements. The noise level is typically around 0.13µm for measurements
using a probe rate of 2000 samples per second. Compared to the groove depth,
which is around 3µm, the noise represents about 4.33%. Some data analysis
approaches described later in this chapter fit a groove shape to the data in
order to lower the effect of this noise by averaging it over several points.

Measurement errors are usually isolated and can be easily detected and cor-
rected since they do not follow the expected shape of the groove. They usually
are off by a lot, which makes the detection even easier. Section 4.2 discusses in
detail how such errors are detected and corrected.

4.1.2 Trigger

The so-called trigger is the signal that is generated by the motion controller
to tell the confocal probe when to measure data. This signal is sent whenever
the linear motion stage crosses a certain position. If this signal were not very
precise in time, the confocal probe would not start the measurement at the
same position for each slice. This would introduce a lateral offset between
slices. Since the lateral position of each groove is exactly the sound, a jitter
in the trigger could introduce high frequency noise in the extracted sound. An
alternative scanning strategy could be used to reduce the effect of that jitter.
Instead of acquiring data while the linear stage is moving with constant velocity
in the direction of the dictation belt axis and incrementing the rotational axis
between each slice, one could scan the surface in the opposite directions. Data
could be taken with constant angular motion over one revolution and then the
linear stage could be shifted by a small value. The resulting data set would
simply be transposed.

4.1.3 Linear motion stage

The confocal probe takes data at a constant rate while the linear motion stage
moves with a constant velocity over the dictation belt. Measurement points are
therefore assumed to be equally distant from each other. If the velocity of the
linear motor is not perfectly constant, some errors would appear in the data.

25



The linear motion stage noise has not been measured separately. However a
measurement was conducted that shows the total noise introduced by the con-
focal probe, the trigger and the linear motion stage combined. At a probe rate
of 2000 samples per second, the standard deviation of the measurement points
is around 0.3µm, which is more than double the noise measured without move-
ment. Compared to the groove depth, which is around 3µm, the noise represents
about 10%. For more information on this measurement, see Section E.2. Again
by fitting the data using least squares fit, the effect of noise on the resulting
groove position is reduced.

4.2 Data Preprocessing

The data aquired by the 3D scanner needs to be corrected before a groove ex-
traction algorithm can be applied to it because it contains some errors that could
cause the algorithm to work improperly. Some errors are due to scanner mal-
functions (measurement errors) whereas others come from the shape of the belt
itself and support cylinder misalignment (warpage). This section explains some
techniques used to fix these problems before an analysis algorithm is invoked.

4.2.1 Measurement errors

On the whole scanned surface it may happen, that some points were badly
acquired because the light returned to the confocal probe was either too weak
or too bright, depending on the actual material on the point (dust) and the
point’s normal orientation. This situation often results in a point whose height
is completely off. In most cases the height of these error points is either arround
0 or arround 330µm, which is around the maximal range of the confocal probe.
Some of them are less off but still remain obvious.

Detecting Measurement Errors

These badly measured points are easy to detect because they are usually iso-
lated and have heights that are very different from the correct points. The
interpolation provides a good error correction as long as only good points are
taken as the base of the interpolation. There are several ways to decide if a
point is good or not. The following algorithm explains one of them:

1 Take a s l i c e .
2 Consider a l l po in t s o f this s l i c e as bad .
3 x = a given th r e sho ld .
4 foreach point in this s l i c e
5 {
6 i f the he ight d i f f e r e n c e s between a l l the
7 cont iguous po in t s in a given window arround
8 the cur rent po int are a l l sma l l e r than a given
9 th r e sho ld

10 {
11 Mark the cur rent po int as a good po int .
12 }
13 }
14 foreach point in this s l i c e from l e f t to r i g h t
15 {
16 i f the cur rent po int i s good

26



17 and the he ight d i f f e r e n c e between i t s e l f and
18 the next po int i s sma l l e r than a given th r e sho ld
19 {
20 Mark the next po int as good .
21 }
22 }
23 foreach point in this s l i c e from r i gh t to l e f t
24 {
25 i f the cur rent po int i s good
26 and the he ight d i f f e r e n c e between i t s e l f t and
27 the prev ious po int i s sma l l e r than a given th r e sho ld
28 {
29 Mark the prev ious po int as good .
30 }
31 }

One of the main advantages of using a window is that a group of contiguous
badly measured points that are almost at the same height will not be considered
as good points. Another technique is to fit a line across the slice and reject all
the point that are too far from the line, but this method has some disadvantages.
First of all, the line fit will be erroneous because of the actual bad points, and
second of all it will not fix, in opposition to the former method, the bad points
inside the grooves because they will be considered as close enough to the line.

Fixing Measurement Errors

As mentionned in the previous section, the interpolation is a good way to correct
measurement errors. To determine points used to construct the interpolation,
the patterns shown in Figure 4.2 are used. The center square represents the
point to interpolate, the grey ones the points to use for the interpolation, and
the white ones are not used. In other words, to use a pattern all the grey
squares must be good points. The preferred pattern is the number 1 and the
least adequate one is the number 12. This means that the first pattern will be
used whenever possible, and if it is not, the second will be tried and so on. The
interpolation in the time direction is preferred for the dictation belts because
they are highly correlated. The first four patterns use 4 aligned points. A 3rd
order polynomial that crosses exactly these points is computed and thus the
missing point can be easily determined. The four next patterns use 2 aligned
points and the missing point is computed by a linear interpolation. The last four
patterns also use a linear interpolation to find the missing point. This method
could be improved using a third point.

Once a point is recovered it stays marked as a bad point to avoid its use as
the basis for another interpolation, which could potentially introduce additional
errors. In some cases, it is impossible to fix a measurement error without basing
the interpolation on previously interpolated points. In this case the correction
algorithm might be applied several times.

4.2.2 Warpage

Warpage is the fact that the scanned surface of the medium is not perfectly flat.
It can either be caused by the fact that the scanner is not perfectly calibrated
or because of the actual warpage of the scanned medium.

In the case of the dictation belts with the 3D scanner, both of these warpage
phenomena appear. The confocal probe moves in the x direction to acquire a

27



1 2 3 4

5 6 7 8

9 10 11 12

Figure 4.2: Interpolation patterns

28



line of points. If the dictation belt does not have exactly the same angle as the
confocal probe’s linear axis then the average distance that the confocal probe
will measure will be either shorter and shorter or longer and longer along the
the x axis. This will result in the addition of a line to the data as shown in the
following equation.

f ′(x, y) = f(x, y) + ax + b (4.1)

The dictation belts have also their own physical warpage, especially when
they were folded and stored in a folder. This warpage also has an influence on
the distance between the belt and the confocal probe. The forces applied on the
belt to put it on the scanning cylinder as well as the belt curvatures may result in
lateral warpage, which is actually the only warpage that will be manifested into
the sound. This warpage will cause the addition of low frequencies, which can
then be easily filtered (see Section 4.4). Because the groove is moving laterally,
the sound will not suffer from the vertical low frequency modulations.

Actually correcting the vertical warpage will lead to more robust and easily
implementable algorithms. For this reason, the surface should be ”normalized”.
This means that it should be flat at a large scale. To do this, for each slice
in the x direction a line is fitted using the least squares method and this line
is subtracted from the slice. The line works well for short scanning distances
but should be replaced by some higher order polynomials for longer scanning
distances.

4.3 Groove Detection

The groove detection algorithm iterates through the acquired data slices. There
is only one groove on the dictation belt running arround it but we will name
groove each crossing of the actual groove in a slice profile. Each slice contains
a number of grooves, depending on the measured width of the dictation belt.
For each slice, the algorithm detects the position of each groove it contains and
links the groove positions of the current slice with the ones of the previous slice
in order to create a single groove. Different methods were used to identify the
groove position, but all use the groove bottom, i.e. the lowest point in the
groove, to represent its position. Note that this point is not necessarily part of
the data set but rather calculated by fitting a groove shape to the measurement
points.

Since the groove shape on the dictation belts is not very distinct (see Fig-
ure 3.3), a robust method had to be chosen to detect interesting regions that
contain a groove. Once these regions have been defined, a first approximation of
the groove bottom position within each region is computed. The groove position
is then calculated as accurately as possible given the first approximation.

The algorithm used to extract the groove movement can be described as
follows:

1 foreach S l i c e
2 {
3 Locate i n t e r e s t i n g r e g i on s that conta in a groove .
4 foreach Region
5 {

29



6 Approximate the groove bottom l o c a t i o n .
7 Compute groove bottom po s i t i o n .
8 }
9 Link groove bottoms o f cur r ent s l i c e with prev ious s l i c e .

10 }

Different approaches were investigated to compute the best possible groove
bottom position. All of them fit a certain function, which is a model of the
stylus geometry, to the neighbor data points of the first approximation. The
next subsections describe these different techniques.

4.3.1 Fit Parabola

The first idea is to fit a second degree order polynomial to the neighbor points
of the first approximation. In order to do that the least squares fit algorithm
is used. Although the groove shape is closer to a circle than a parabola, the
fitting operation is much simpler to compute for a parabola than it is for a circle.
Figure 4.3

If the function is given by y(x) = ax2 + bx + c the x position of the minima
is located at −b

2a .
More information on least squares fit can be found in [7].

Figure 4.3: Example of a groove fit. Red surface is the media, green line is the fit

parabola and blue dot is the bottom of the parabola, which is supposed to be the groove’s

center

Constant Opening Factor

Another approach is to fit a parabola with a constant factor for the x2 term.
If the parabola equation is given by y(x) = ax2 + bx + c, a is chosen to be
constant. Since the shape of the recording needle is probably not changing over
time, this might be a promising way to model the shape of the groove. The
constant value for a was averaged over the whole data set by fitting a regular
parabola in the first place. If the a factor is constant the equation becomes a
first order polynomial, which is given by y′(x) = bx+ c, where y′(x) is obtained
by subtracting ax2 to each value of y(x).

Minimize Distance in X

The general least square fit computes analytically the minimum of the function
given by:

30



χ2 =
N∑

i=1

[
yi − f(xi)

σi

]2

. (4.2)

Since the measurement errors (standard deviation) σi are not known, they
are set to be a constant value: σi = 1. N is considered to be the number of
measurement points to fit. yi is the ith measurement point and f(xi) is the
function value for a certain value of xi. f(xi) is given by ax2 + bx + c where a,
b and c are the parameters to optimize. The least square method minimizes the
sum of the squares of the distance in y between each measurement point and
the parabola.

Remember that the groove has a lateral modulation. The goal is to find the
best possible approximation in x to represent the groove position. The least
square fit method finds the best parabola by minimizing distances in y. By
setting the coefficient of x2 to be a constant the axes of the linear function can
be inverted (y ⇔ x). By doing this the least square fit minimizes the distance
in x between the measurement points and the function.

4.3.2 Fit Circle Shape

Pictures of the needle show that its shape is like a circle. This approach considers
the use of nonlinear fitting methods to fit the best circle with constant radius
to the measurement points. The parameters to optimize are the coordinates of
the center of the circle. Each y value is then computed like that:

y = py −
√

r2 − (px − x)2. (4.3)

Where (px, py) is the center of the groove and r is the radius of the circle.

4.3.3 Repeated Fit

To compute the best approximation of the groove bottom position only one fit
might not be enough. Here different ideas are considered to compute several
fits and choose the best one.

Variable Window Width

Previously the number of points to consider in the fit was constant. If the
window width was 11 for example, five points on each side of the first approxi-
mation together with the first approximation were considered to be part of the
fit. Here several window sizes are considered. If the size of the window is even,
two possibilities exist to place the window around a center point. Both were
computed. The question arises how to compare those fits. The mean squared
error can not be used in this case since the number of points considered in the
fit is variable. A fit with less measurement points is very likely to have a lower
mean squared error than a fit with more points. The χ2 distribution could be
used to compare two fits.

31



Variable Window Position

Instead of changing the window size as described earlier, the window position of
the measurement points could be moved to different position in order to find the
best fit. Typically the first approximation is considered to be the center of the
measurement points. Here the window was moved from −3 points to +3 points.
For example if the first approximation is 125 and the window size is 11, the
considered point intervals would be: [117127], [118128], ..., [120130], ..., [124133].
The best fit was considered to be the fit with the smallest mean squared error.
The mean squared error of a fit is given by:

mse =
1
N

N∑
i=1

(yi − f(xi))2, (4.4)

which is essentially the sum of squares of the distance between the measure-
ment points and the fitted function.

Remove Bad Points

Another idea is to remove the bad points from the considered points and recom-
pute the fit. A point is considered to be bad if its distance to the fitted curve is
too large. Points that do not follow the usual groove shape, i.e. measurement
points of dust, would be removed. In order to decide if a point is too far away
from the fitted curve the standard deviation of the distance point to curve was
measured for 10000 fits and a window size of 11. The standard deviation is
σ = 0.2µm. If the distances from the points to the curve are considered to be
normally distributed, then 68% of the points will be within one standard devi-
ations away from the curve, 95% of the points will be two standard deviations
away and 99.7% will be within 3 standard deviations. The factor used as a
threshold needs to be tuned to exclude the bad points and keep the good ones.
A minimum number of points was set in order to avoid fits with too few points.

Note that the standard deviation appears to be the same for all the 11 points,
which suggests that the chosen window size is certainly not too large.

4.4 Data Post-Processing

The result of the groove detection step is essentially a signal that contains the
groove position for each time step with the same sampling frequency that was
used during the measurement process. It basically corresponds to the amplitude
over time. Before the data is filtered and resampled some errors are removed.
In the data preprocessing step measurement errors have been removed and cor-
rected. The goal of the data post-processing is to correct errors in the signal
that occur due to dust or scratches. Two kinds of error correction have been
considered here.

4.4.1 Silence Generation

When the signal is very weak it is most likely noise. The silence generation
replaces this noise by real silence. Actually dictation belts were not used to
store music but speech so the risk of losing some interesting information is quite

32



low, altough it still exists. To do that silence generation, the analyzer splits the
wave in chunks of 20ms, which can still contain the lower expected frequency
on the dictation belt (50Hz). Then the signal’s mean sum of absolute deviation
from the signal mean value is computed for each of these blocks. If more than a
given number of consecutive blocks have an energy lower than a given threshold,
they are replaced by silence. This technique helps in most of the cases to get
a waveform closer than the actual recorded one but the result does not sound
really good for the human ear because of the noise is no more continuous.

4.4.2 Z Shift Detection

As the groove on the dictabelt is modulated in the width and not in the depth,
the height (Z) of the extracted groove should stay constant or at least vary
slowly. The Z shift detection algorithm finds peaks in the Z component of the
groove and consider the corresponding points of the groove as bad. To find
the bad point, the same algorithm as discussed in Section 4.2.1 is applied. A
linear interpolation on their X component is then applied to recover them. This
algorithm actually removes some clicks due to dusts on the dictation belt.

4.5 Filtering and Resampling

Signal processing operations are applied to the reconstructed audio signal before
it is outputted to a Wav file.

4.5.1 Resampling

In digital audio several sampling rates are commonly used, among them: 11.025kHz,
22.050kHz, 44.1kHz. The bandwidth of the dictation belt recorder is between
3kHz and 4kHz starting at 100Hz to 3.5kHz, the resulting Wav file is stored
using a sampling frequency of 11.025kHz. According to the Nyquist sampling
theorem, the sampling frequency of the resulting Wav file must be greater than
twice the bandwidth of the reconstructed signal, in order to avoid aliasing.
Therefore a sampling frequency of 11.025kHz is enough.

Resampling in cases where the ratio between the two sampling frequency is
given by a rational number L

M is typically done by up-sampling the signal by a
factor L and then down-sampling it by a factor M , where L and M are positive
integer values [6], [4]. The up-sampling process is called interpolation and the
down-sampling process is called decimation. The interpolation operation inserts
L − 1 equidistant zero-valued samples between each consecutive samples of an
input sequence x[n]:

y[n] =
{

x[n/L], n = 0,±L,±2L, ...
0, otherwise.

The output y[n] is then passed though a low-pass filter that cuts off the
spectral components higher than 1

2L. The decimation operation simply keeps
every Mth sample of the input sequence x[n]:

y[n] = x[nM ].

33



In order to avoid aliasing the signal x[n] has to first go though a low-pass
filter that cuts all frequency components higher than 1

2M .
Data was acquired at different sampling frequencies: 12.6kHz, 25.2kHz and

50.4kHz (see Chapter 3 for more details). Considering for example a sampling
frequency of 50.4kHz for the input signal and 11.025kHz for the resulting wave-
form, then the ratio between the two sampling frequencies would be given by
11025
50400 = 7

32 . The input signal would be up-sampled by a factor of 7 and down-
sampled by a factor of 32 to reach the desired sampling frequency of 11.025kHz.

For details on the implementation of the resampling operation, please refer
to Section 6.3.

34



Chapter 5

Study of a Dictation Belt
Recorder

5.1 Sound Samples Recording

Several dictation belts with tests patterns were recorded on blank belts with
the dictation belt recorder. The external microphone input is used to feed
the signal generated by the computer into the dictation belt machine. Sound
patterns were generated with LabView and converted to analog signals with
the high-accurarcy data acquisition card (NI PXI 4461). The typical sound
pattern is a series of eight sine waves at different frequencies going from 50Hz
to 6.4kHz. The duration of each frequency is typically two seconds. At each
frequency change silence is generated for half a second. The frequency is doubled
at each frequency change (50Hz, 100Hz, 200Hz, ..., 6.4kHz).

Having these known sound samples it is now possible to compare the ex-
tracted sound wave with the generated wave and see how the dictation belt
machine affects the sound.

5.2 Apparatus

The dictation belt machine used here is probably the last generation of dictation
belt machines produced. It already uses transistors as electronic components as
opposed to older versions that used tubes. Dictation belts can be played back
as well as recorded. The machine uses two different needles to do that: a crystal
pickup for playback and a sapphire magnetic cutter for recording.

5.2.1 Playback Pickup

The playback pickup is a crystal pickup that outputs a voltage that is propor-
tional to the needle displacement, i.e. the groove movement. Figure 5.1 shows
two pictures of the playback needle. On the left, the needle is shown in a groove.
In is interesting to notice that only a tiny part of the needle is actually in the
groove. The second picture on the right shows a close-up of the playback needle.

The dictation belt machine was modified in order to read the signal across the
pickup. Figure 5.2 shows where the signal was measured. The whole schematics

35



can be seen in Chapter H. Note that the rest of the electronics was disconnected
while measuring the signal across the needle to avoid any perturbation.

(a) (b)

Figure 5.1: Dictation belt machine playback needle (a) Shows the needle in a

groove. (b) Is a close-up on the playback needle.

Figure 5.2: Schematic of playback needle connection.

5.2.2 Recording Pickup

The recording cutter is magnetic. It has a sapphire needle, which embosses the
sound signal into the soft material. The magnetic cutter shown in Figure 5.3 can
be modeled as a damped harmonic oscillator. At very low frequency, the position
of the needle is proportional to its driving force, which is the input voltage and
at higher frequency, the position of the needle is given by the integral of the
input voltage. The implications of this is discussed later.

The dictation belt recorder was modified to also read the signal of the
recording needle. Figure 5.4 shows where the signal was measured. The whole
schematics can be seen in Appendix H.

A picture of the recording needle is shown in Figure 5.5. On the left you can
see the recording needle and partially the metal piece that stays in between the
magnets and in the coil. On the right its a close-up on the recording needle. Its

36



V(t)

Needle

Magnet+ -

Figure 5.3: Schema of the recording needle.

Figure 5.4: Schematic of the recording needle connection.

37



not possible to picture the needle in a groove since the needle is berried under
the dictation belt player.

(a) (b)

Figure 5.5: Dictation belt machine recording needle (a) Recording needle. (b) Is

a close-up on the recording needle.

As mentioned earlier, the movement of the recording needle is given by the
integral of the input voltage. If the input is given by sin(ωt), the signal recorded
would be − 1

ω · cos(ωt). Hence higher frequencies will be more attenuated than
lower frequencies. This is indeed what is measured. Figure 5.6 shows on the top
a series of seven sine waves that have higher and higher frequencies. This is the
typical test sound pattern described earlier. This signal was measured across
the recording needle. The electronics of the dictation belt machine apparently
boosts high frequencies before the signal is recorded, since the input signal (not
shown here) had the same amplitude for all the frequencies. The image at the
bottom shows the exact same signal measured across the playback needle. One
can see that the higher frequencies where attenuated more than the lower ones.

5.2.3 Speaker Output

A connector to the speaker output was also added in order to measure the signal
after the electronic circuit. To have the same impedance as the speaker a small
resistor of 8Ω was connected at the output.

38



(a)

(b)

Figure 5.6: Comparison of input and output signal of the dictation belt. (a)

Sine waves at different frequencies measured across the recording needle. (b) The same

sine waves measured at the playback needle. On both figures the frequency is doubled

between each sound sample starting at 50Hz (50Hz, 100Hz, 200Hz, ..., 3.2kHz).

39



Chapter 6

Software

6.1 Analysis

6.1.1 Needs

In the mind of going ahead with the sound extraction of the different media,
LabView cannot be used anymore. Its biggest advantages are the ”easy get in”
and the huge library it provides. Unfortunately since it is a graphical program-
ming language, a lot of time is spent to arrange blocks and wire them together.
The nested structures really cause a big problem when the programmer needs
to add some blocks into a frame that is already full. In order to resize the frame
he has to first resize the frame that contains this frame and so on, and then
rearrange all the wires. Actually the waste of time for small modifications is
completely disproportionate.

That is why there is a need to create a ”regular” program that will be able
to extract the sound from the scanned surface of a dictation belt. The sofware
should be extendable as easily as possible to extract sound from other kinds of
mechanical media. It has to provide a graphical user interface that shows the
surface in a 3D view as well as in a 2D view. The user must be able to see what
the analyzer is doing in order to debug it. He can start it, pause it, resume it
and stop it. The software must be able to be command line runnable in order
to use it from a batch file.

6.1.2 Programming Language

For the realization of the software, five programming languages where taken in
consideration: C, C++, Microsoft.NET languages, Java and Microsoft Visual
Basic 6, which are currently the mostly used programming languages.

For the code to be reusable and well-structured, the language should be
object oriented. C and Microsoft Visual Basic 6 are not object oriented and can
therefore not be used.

The next step is to decide to either use a managed or an unmanaged program-
ming language. C++ is unmanaged, Java as well as Microsoft.NET languages
are. The biggest advantage of C++ in comparison to managed programming
languages is its speed of execution because it has not to be interpreted by a
virtual machine at runtime. On the other hand the programmer must manage

40



himself memory allocations. Furthermore, C++ is an old language and is there-
fore unpleasing; for example the coder has to write function prototypes to make
the compiler aware that some functions exist some place further in the code.
As no special requirements are needed concerning the execution speed of the
program, a managed programming language will be used.

At this point either Java or a Microsoft.NET language has to be chosen.
The biggest Java advantage is its portability. The Java Virtual Machine has
been released for all the most common operating systems, which is not the case
for the Microsoft.NET Framework that exists currently only for Microsoft Win-
dows. But Microsoft.NET languages have the advantage to be more advanced
than Java. Furthermore, Microsoft Visual Studio provides a great integrated
development environment, which helps saving a lot of time when creating user
interfaces. As long as all the computers used for this project are running Mi-
crosoft Windows XP and that there was no particular requirement concerning
the portability of the code, and that a user interface has to be designed, a
Microsoft.NET language will be used.

The Microsoft.NET framework supports a lot of programming languages
(over 25). Each part of the same project can be written in a different language.
For this project, C# will be preferred because of its syntax, which is a really
good mix between C++ and Java.

6.1.3 Graphic API

The program should be able to display the surface of the scanned medium as
smoothly as possible, which involves the best possible frame rate, when the user
is moving the camera. Because of the resolution of the surface, which is about
152 millions of triangles per square inch, an acceptable frame rate can only be
reached by using a graphic application programming interface that provides a
direct access to the graphic card.

Today there are two widespread graphic libraries that allow direct access to
the hardware. Those are Microsoft DirectX and OpenGL. The former is prop-
erty of Microsoft Corporation and runs only under Microsoft Windows whereas
the latter is an open source library that runs on most of the operating sys-
tems. Both are free. As long as the program will run under Microsoft Windows
the restricted compatibility of Microsoft DirectX is not a problem. Since Mi-
crosoft Visual Studio is used, using Microsoft DirectX will lead in a better IDE
integration, especially for debugging. That is why this one will be used.

6.1.4 Math and DSP Library

As LabView from National Instrument was previously used, the use of Measure-
ment Studio from the same company is very appropriated. Measurement Studio
is almost the same library as LabView uses, written for Visual Studio.NET.

6.1.5 Input

The software has to be able to read the file created by the acquisition program.
The input file format is described in the Appendix F.

41



6.1.6 Output

The program may produce different kinds of output depending on which algo-
rithm is applied to the measured data set. At least one of these algorithms has
to be able to produce a wave file (.wav). Please refer to the different analyzers
descriptions in Appendix A.2.1 to learn more about the file they create.

6.2 Design

6.2.1 Architecture

There are three big parts in this software: the measurement accessor, the graph-
ical user interface, and the analyzer. The measurement accessor provides an
abstraction layer to access the measured data. The graphical user interface
allows the user to interact with the program and the analyzer performs some
treatments with the measured data through the measurement accessor. As each
of these parts is subject to future evolution, they are each implementing a dedi-
cated interface. This allows Groovster to use as measurement accessor, analyzer,
resp. graphical user interface any class that implements one of those interfaces.
The Figure 6.1 shows a simplified class diagram that should give a good idea of
the software architecture.

To make Groovster as flexible as possible, the classes implementing these
interfaces are compiled to some shared libraries, which allows dynamic class
loading. That means that there is no need to modify the existing code to add
new features. The class diagrams for the existing Groovster’s analyzers, mea-
surement accessors and graphical user interfaces can be found in Appendix B.

At the program startup, a window shows all the implementations found for
each part and allows to choose which will be used to run the program, as shown
in Figure 6.2.

6.2.2 Concurrent Programming in C#

Because the program has to be responsive even when performing long computa-
tion tasks, it has to use multithreading technologies. Like most of the program-
ming languages, C# offers threading and synchronisation techniques. They are
several ways for synchronising resources as explained in [11] but this program
only uses a simple one called ”monitors”. The C#’s threading library owns the
class Monitor, which exposes some static methods for monitored synchroniza-
tion. The software uses actually only the following ones, which are explained in
the following sections.

• Monitor.Enter(object)

• Monitor.Exit(object)

• Monitor.Wait(object)

• Monitor.Pulse(object)

42



Functions

GetAssemblyDir()
ChangeFileExtension()
get_ConfigFilePath()
set_ConfigFilePath()

IDesctiptible

get_DescName()
get_DescDescription()

SimpleAccessor

Form

RectangleAccessor

IGui

Init()
StartGui()

IAnalyzer

Start()
Stop()
Pause()
Resume()
Init()
get_State()
Join()
get_SliceDataReadyEvent()
set_SliceDataReadyEvent()
get_TextEvent()
set_TextEvent()
get_ProgressEvent()
set_ProgressEvent()
get_GrooveDataEvent()
set_GrooveDataEvent()

MainClass

Main()

DictabeltAnalyzerViewSimpleGUI

DictabeltAnalyzer

FullScreenView

IMeasurementAccessor

Init()
GetHeight()
GetHeights()
SetHeight()
IsMeasurementError()
SetMeasurementError()
get_File()
set_File()
get_SizeX()
get_SizeY()
get_UnitSizeX()
get_UnitSizeY()
get_GrooveAccessor()
get_IsPreprocessed()

DictabeltCorrector

Functions is a class, 
which provides some 
static methods that 
many classes use.

 

Figure 6.1: Architecture overview

43



Monitor.Enter

The static method Monitor.Enter(object) locks the object passed as parameter.
If the object is already locked by another object, the thread that called the
method is blocked until it can get the lock.

Monitor.Exit

The static method Monitor.Exit(object) unlocks the object passed as parameter.
If some other threads were waiting for the the lock, one of them can then grab
it.

Monitor.Wait

The static method Monitor.Wait(object) makes the calling thread release the
lock on the given object and wait until it is explicitly pulsed by another thread.
Then it tries to reacquire the lock on that object. If it cannot it will wait to be
pulsed again. See the Monitor.Pulse method for more information. The Wait
method can also be used with a condition as parameter. If the waiting thread
is woken up and the condition is not satisfied, it is going to wait again.

Monitor.Pulse

The static method Monitor.Pulse(object) makes the first thread in the waiting
queue to be woken up and get the lock on that object. There is also a method
PulseAll that wakes up all the waiting thread, but only one is going to be able
to take the lock. The other one are going to wait again. This is useful when the
method Wait is used with a condition. See the Monitor.Wait method for more
information.

The ”lock” statement

The C# programming language offers a syntactic sugar which is the ”lock”
statement used to lock an object.

1 lock ( mySharedObject )
2 {
3 // Synchronized code
4 }

The lock statement tries to acquire the lock on the object given as parame-
ter. If the object is already locked by another thread, the calling thread is going
to wait for the lock on that object to be released. Once it got the lock it enters
the synchronized region and releases the lock once it finished it. If an uncatched
exception occurs in the synchronized region the lock will be automatically re-
leased. The lock statement is equivalent to the following code:

1 Monitor . Enter ( mySharedObject ) ;
2 try
3 {
4 // Synchronized code
5 }
6 f ina l ly
7 {
8 Monitor . Exit ( mySharedObject ) ;

44



9 }

6.2.3 3D View of the Surface

DirectX

Microsoft DirectX is an application programming interface designed especially
for game programming and multimedia applications. It is made of different
modules, which handle graphic output, sound recording and outputting, net-
working and input devices such as keyboards, mice and joysticks. Most of them
provide direct access to hardware, which leads to a huge performances increase.

In this project only Direct3D, a part of DirectGraphics, which is the graphics
output module, is used. Graphic objects in Direct3D are conceptually a couple
of triangles put together. The triangle is the only 3D surface that Direct3D
is able to draw. Objects are composed of a vertex buffer and optionally an
index buffer. Vertices are 3D points with some other properties such as color,
coordinates in texture or normal vector. The index buffer represents how the
triangles have to be spanned over the vertices. Once an object has to be drawn,
its vertices and indices are sent to the 3D pipeline, which will process them and
render the 3D object to a 2D surface, which is the screen. See Appendix C.1
for more information about the Direct3D 3D pipeline.

Medium Sufrace 3D Model

The easiest way to create the 3D model of the medium surface from its height
map is to span two triangles for each four adjacent heights. Figure 6.3 shows
an example of a triangulated surface.

Most of nowadays graphic cards are not able to handle objects that contains
more than about 20000 triangles. That is why the medium’s surface, which may
contain more than 1billion of triangles, is split in many rectangles of less than
20000 triangles. This also allows to load only visible rectangles from the input
file. The detection of visible and not visible objects is discussed in Section 6.2.3.

The models have to be lighted in order to help the user to identify the peaks
and the valleys. The Figure 6.4 shows that it is very difficult to see the relief
if the surface is not lighted. A directional light is used because it is best one
in term of computation time, which produce shading effects. Direct3D applies
the lighting on vertices, thus any triangle has the lighting effects of its three
vertices.

The lighting force of each vertex is calculated by computing the dot product
of the vertex’ normal and the light source’s inverted direction vector. Positive
values and 0 are considered as unlighted while 1 corresponds to the the maximum
lighting. The lighting of each vertices is calculated at each rendering because
both light or vertices are susceptible to move from one frame to the next one.

Culling

Each 3D triangle that has to be rendered consumes time for its computation.
The culling operations consist in reducing the number of triangles to be drawn.
Some techniques used in this project to reduce the number of triangles to render
are explained in this section.

45



One of the easier culling technique is the face culling because it is supported
by DirectX. It consists in making one face of each triangle invisible. For example
if you want to draw a cube, you will set all the faces that are inside the cube
to be invisible, assuming that the cube is never going to be observed from the
inside of it. This technique basically divides the number of triangles to draw by
two.

Although the face culling decreases considerably the number of triangles to
be rendered, it does unfortunately not avoid those invisible triangles to cross a
part of the 3D pipeline because the positions of their vertices on the 2D screen
are used to determine which face of the triangle is being seen.

A very good improvement that would avoid a lot of triangles to go to the
3D pipeline is called the object culling. This technique consists in testing if
an object is visible or not from the viewing point before sending it to the 3D
pipeline.

It is useful to define geometrically the portion of the scene that the user is
seeing in order to avoid sending outer objects that will finally not be displayed
to the 3D pipeline. This visible volume is called the viewing frustum, which
is delimited by six planes: the left plane, the right plane, the top plane, the
bottom plane, the near plane and the far plane (also known as far and near
clipping plane). The left, right, top and bottom planes include respectively the
left, right, top and bottom borders of the screen. All of these four planes contain
a special point called the eye. The left and the right planes intersect at the eye
with an angle of 45 degrees. The near and the far planes are parallel to the
screen. Their goal is to avoid objects that are too far or too close to be drawn
(computation time saving).

To check whether an object is outside the viewing frustum or not, instead of
testing the visibility of each of its composing triangles, the objects are placed
in a so called axis aligned bounding box, which simplify considerably calcula-
tions (computation time saving). The axis aligned bounding box is the smallest
parallelepiped that can fully contain the object and that is aligned with the 3
unit vectors (x, y and z). Please see Appendix C.2 for more details about the
detection of objects in frustum.

Scene Organization

The code that is responsible for determining whether an object is visible or not
has to check the visibility of all the objects one by one (O(n) considering n as
the number of objects) and this is done for each step of the camera movement.
This sadly decreases the frame rate of the 3D visualization.

A good techniques to decrease this selection time is to organize the objects
of the scene in an octree. The octree is to a 3D scene what the quadtree is to a
2D scene. Due to the two dimensional nature of the paper on which this report
is written, an explanation of the quadtree will be much more clearer.

Using a quadtree in a 2D scene consists in considering the scene as one big
cell which contains 4 subcells. Each of these subcells contain 4 subcells and so
on until a given nesting level is reached (see Figure 6.5). Each object of the
scene is placed in the smallest cell that can fully contain it (see Figure 6.6).
Once the program has to decide which objects are visible, it starts from the
biggest cell and checks its visibility. There can be three cases:

46



• Case 1: The cell is fully visible. All the objects contained in it, all subcells
included, will be visible.

• Case 2: The cell is not visible. All the objects contained in it, all subcells
included, will not be visible.

• Case 3: The cell is partially visible. Its object and its 4 cells have to be
tested for visibility. Its cells will also lead to one of these three cases,
so the operation will be done on each of the subcells as if they were the
biggest cell taken as example.

The quadtree offers to determine objects visibility in an O(ln n) expected com-
plexity, considering n as the number of objects contained. They provide also
non negligible advantages in object collision detection that will not be discussed
in this report. The octree works exactly the same way as the quadtree except
that a cell is a volume that is split 8 smaller cells.

Vertices Optimization

As discussed in Section 6.2.3 the model has to be lighted. In order to make this
possible, it has to contain a normal vector on each of its vertices. The easiest
way to set up the normal vectors is to store the vertex buffer of the model in the
DirectX’s class ”Mesh” and call the method ”ComputeNormals” on it, which
will cause all the normal vectors to be automatically computed considering all
the faces each vertex is contributing to.

When a vertex buffer is created it basically opens a data stream to the
graphic card that allows to write the vertices directly into its memory as if the
programmer were writing into a file. The problem is that transfering data to
the graphic board takes time and the internal operation of ”ComputeNormals”
is to load the vertex buffer and the index buffer of the model from the graphic
card into the system memory, compute the normals and send the vertex buffer
back to the graphic card.

The time needed to load a rectangle of 20000 triangles was about 400ms
of which 320ms (80%) were spent on loading the model to the graphic card
and computing the normals on a nowadays computer. This delay is too long
especially when the program has to load hundreds of such rectangles, that is
why some optimizations have to be done. Let n be the number of triangles, then
the size of one vertex, the size of one index, the size of the vertex buffer, the
size of the index buffer, and the total size are given by the following equations.

V ertexSize = sizeof(float) ∗ (NbCoordinatesPos +
NbCoordinatesNormal) + sizeof(Color)

= 4bytes ∗ (3 + 3) + 4bytes

= 28bytes (6.1)
IndexSize = sizeof(short) = 2bytes (6.2)

V ertexBufferSize = n ∗ V erticesPerTriangle/6 ∗ V ertexSize

= n ∗ 3/6 ∗ 28bytes = n ∗ 14bytes (6.3)
IndexBufferSize = n ∗ V erticesPerTriangle ∗ IndexSize

47



= n ∗ 3 ∗ 2bytes

= n ∗ 6bytes. (6.4)
Total = V ertexBufferSize + IndexBufferSize

= n ∗ 20bytes (6.5)

Note : division by 6 because each vertex is used six times (for 6 different
triangles).

As long as there is no need to move neither the light source nor the medium
surface model, all its vertices will allways have the same lighting values. This
property allows to perform a prelighting on these vertices, which consists of
altering their color to create the lighting effect. This technique offers two ad-
vantages: first the vertices do not need to own a normal vector anymore and
second the vertex buffer will therefore be smaller thus faster transfered to the
graphic card, and the graphic card will not need to compute real-time lighting
anymore on the surface model, which will lead in a better frame rate. The new
vertex size, the new vertex buffer size and the new total size are given by the
following equations.

V ertexSize = sizeof(float) ∗NbCoordinatesPos + sizeof(Color)
= 4bytes ∗ 3 + 4bytes = 16bytes (6.6)

V ertexBufferSize = n ∗ V erticesPerTriangle/6 ∗ V ertexSize

= n ∗ 3/6 ∗ 16bytes = n ∗ 8bytes (6.7)
Total = V ertexBufferSize + IndexBufferSize

= n ∗ 14bytes (6.8)

The new data set represents 70% of the preceeding one. The rectangles will
not only load faster (90ms instead of 400ms) but also the graphic card will be
able to handle 1.4 times the number of rectangles it could have loaded before.
The lighting values are computed the same way as explained in section 6.2.3
and mixed with the actual color of the vertex.

Surface Loader

As each rectangular portion of the medium surface still takes a long time to
load (80ms), and the program has to load new surfaces even when the user is
moving the camera, this operation is performed by a separate thread called the
Surface Loader. This way the user can move the camera smoothly even when
new rectangles are being loaded.

The Surface Loader thread accesses a shared object that contains a list of the
rectangles that have to be in the scene and, because the analyzer may change
some measured values, a list of measurements to reload. The GUI thread, which
is basically the main window of the program, builds these two lists according
to the camera position and what the analyzer did. The Surface Loader thread
can then read those lists and load the needed rectangles and unload the ones
that are not needed anymore. Because the lists may change while the Surface
Loader is processing them, it works on a copy of them.

The GUI thread makes use of three flags encapsulated in a shared object to
control the Surface Loader thread. The first flag indicates whether the list of

48



rectangles that have currently to be in the scene has changed or not. The second
one is set when the program wants to force the Surface Loader to consider the
new list of orders it just created instead of finishing processing the old one, and
the third flag allows to terminate the Surface Loader thread. Its workflow is
explained below:

1 while true
2 {
3 Lock the three f l a g s .
4 while none o f the three f l a g i s s e t
5 {
6 Release lock on the three
7 f l a g s and wait to get lock again .
8 }
9 Clear f l a g Force−cons ider−new− l i s t .

10 i f f l a g Terminated i s s e t
11 {
12 Release lock on the three f l a g s .
13 Exit While .
14 }
15 Lock the o rde r s l i s t , copy i t , unlock i t .
16 Clear f l a g Orders− l i s t −changed .
17 Re lease lock on the three f l a g s .
18 foreach r e c t a n g l e s to (un) load
19 {
20 Lock the three f l a g s .
21 i f f l a g Force−cons ider−new− l i s t i s s e t
22 {
23 Unlock the three f l a g s .
24 Exit While .
25 }
26 Unlock the three f l a g s .
27 (Un) load the r e c t ang l e
28 }
29 Correct a l l the measurements to c o r r e c t .
30 }
31 Unload a l l squares .

The Surface Loader gets a list of rectangles to be in the scene. It could
unload all the rectangles and load the one that are in the list each time it gets a
new list but because of the required loading time it has to handle its rectangles
in a little smarter way. It keeps a list of all the rectangles that are currently
in the scene up to date. Each time it gets the new list, it determines which
rectangles have to be loaded and which one have to be unloaded. The following
algorithm performs that in a complexity of O(n) but only works if the list of
rectangles is sorted, that is why rectangles must have an ordering relationship
between them made in a way that none of them is equal to another one.

1 i = 0 , j = 0 , newRectInSceneList = empty l i s t
2 while i < nbRectInScene or j < nbRectToBeInScene
3 {
4 i f i < nbRectInScene
5 rec t InScene = r e c t InS c en eL i s t [ i ]
6 else
7 rec t InScene = null
8 i f i < nbRectToBeInScene
9 rectToBeInScene = rectToBeInSceneList [ j ]

10 else
11 rectToBeInScene = null

49



12 i f r e c t InScene = null or
13 ( rectToBeInScene <> null
14 and rec t InScene > rectToBeInScene )
15 {
16 Load the r e c t ang l e ” rectToBeInScene ” .
17 Add i t to newRectInSceneList .
18 j = j + 1
19 }
20 else i f rectToBeInScene = null or
21 ( r ec t InScene <> null
22 and rec t InScene < rectToBeInScene )
23 {
24 Unload r e c t ang l e ” r ec t InScene ” .
25 i = i + 1
26 }
27 else
28 {
29 Add rec t InScene to newRectInSceneList .
30 i = i + 1
31 j = j + 1
32 }
33 }

6.2.4 Information Exchange

The analyzer and the graphical user interface need to communicate. The graph-
ical user interface may ask the analyzer to pause, resume, start or stop whereas
the analyzer may ask the graphical user interface to display some data. The
following sections explains the communication process between these two parts.

GUI Talks to Analyzer

The GUI talks to the analyzer by invoking some thread commands. Actu-
ally these thread commands are mapped by analyzer specific methods that are
declared in the analyzer interface. These methods allow the graphical user in-
terface to start, stop, pause and resume the analyzer thread. It is important
to keep in mind that these methods do not guarantee that the thread will be
immediately aware of the call inherently to the operating system.

Analyzer Talks to GUI

The analyzer thread might want the graphical user interface to be notified of its
progress. For this reason events have been chosen to make this communication.
The graphical user interface has to subscribe to the event it is interested in then
the analyzer will fire them when needed. There are four kinds of event that the
analyzer may raise:

• Data ready event

• Groove data event

• Text event

• Progress event

50



The data ready event is sent when the analyzer thinks that some data it
processed is interesting and should be displayed. This event can hold curves to
draw in the 2D view and points to reload in the 3D view.

The groove data event is raised when the analyzer extracted some groove
data. Typically the GUI1 (described in Appendix A.2.1) subscribes to this event
to update the sound panel when it has to.

The text event is raised when the analyzer wants to send some text to the
graphical user interface. In most of the cases these texts are printed into a
console.

The progress event is fired when the analyzer wants to notify the graphical
user interface of its progression during a long task.

6.3 Implementation

6.3.1 Class Diagram

The classes diagrams can be found in the Appendix B. There are 7 diagrams,
which each explains a part of the existing libraries in Groovster except the first
one, which is a global view:

• The global architecture diagram

• The Rectangle Accessor diagram

• The Simple Accessor diagram

• The SimpleUI diagram

• The Full 3D diagram

• The Dictabelt Analyzer diagram

• The Dictabelt Corrector diagram

6.3.2 Interfaces Description

IAnalyzer

The interface IAnalyzer describes the methods and the properties to implement
to create a compatible analyzer. Some of them are used to control the analyzer
thread, some are for the events subscribing. The method Init should be used as
a delayed constructor, because the object could be instanciated but never used.

IBoundBoxed

IBounding box forces a class that implements it to own an axis aligned bounding
box. Objects that implement this interface can be added to an octree. (octrees
and axis aligned bounding boxes are explained in Section 6.2.3).

51



IDescriptible

This interface is designed to make the classes that implements it to be able to
describe themselves. It has two properties: DescName, which should return
the name of the class and DescDescription, which should return the description
of the class.

IGui

The graphical user interfaces of Groovster have to implement this interface to
be able to communicate both with the analyzer and the measurement accessor.
The method Init should be used as a delayed constructor, because the object
could be instanciated but never used.

IMeasurementAccessor

This interface describes the methods and the properties to implement to cre-
ate a compatible measurement reader. The main methods are GetHeight and
SetHeight, which provide an access to the measured surface heights. They hide
the way the data is stored in the file. If the file format changes, the programmer
has only to write a new class that implements this interface.

IPointSet

IPointSet describes a generic point set structure that is ”published” by the
analyzer.

6.3.3 Classes Description

This section provides a brief description of the classes used in Groovster, sorted
alphabetically.

AnalyzerDataReadyEventArgs

Event argument sent from the anayzer every time some data has been processed
and is ready to be consumed.

AnalyzerGrooveDataEventArgs

Event argument sent from the anayzer when groove data is ready.

AnalyzerProgressEventArgs

Event argument sent from the anayzer to tell its progress.

AnalyzerTextEventArgs

Event argument sent from the anayzer when it wants to send text information.
This object is typically used to send debug information from the anayzer to the
user interface.

52



ApplyBadGroovesFilter

Remove bad regions at the beginning and the end of the groove file. Indicates
to the user bad regions that are in the middle of the groove file. If several
consecutive groove positions could not be found by the analyzer, the region is
considered bad.

BitMapWriter

This class is used to create a bitmap given its width and height and draw in it
using the SetP ixel method. It can then save the image as a PNG file.

BoundingBox

BoundingBox represents an axis aligned bounding box (AABB are explained in
Section 6.2.3).

CircleFit

This class provides some static methods used to fit a circle as well as possible
in a group of points.

CircleOp

Finding the center of a circle given two points on it and its radius can be
achieved by a static method of this class. Another one computes the distance
from a point to a circle.

Controller3D

This is the leader for the 3D view in GUI1 and Full3D. It decides which
portions of the surface have to be loaded and which have to be unloaded using
an octree and a frustum (see Section 6.2.3). It creates and controls a thread
that take care of loading and unloading these portions.

DictabeltAnalyzer

This class is the analyzer for the dictation belts. It implements IAnalyzer. From
the scanned surface of a dictation belt it extracts as well as possible the sound
that was recorded on it, using different algorithms. At this point there is no
way to select which algorithm will be used but modifying a method call in the
code.

DictabeltAnalyzerView

DictabeltAnalyzer view is the main window of GUI1. It implements IAnalyzer.
It has three panels: the surface panel, the sound panel and the console panel.
The surface panel displays a 3D view of the medium scanned surface and a 2D
view of a slice of it. The sound panel shows the actual extracted groove and the
console panel displays text messages that were sent by the analyzer.

53



DictabeltCorrector

Correcting measurement errors on the scanned surface is the job of this class,
which implements IAnalyzer. From the scanned surface of a dictation belt it
creates another surface that is supposed not to contain all these errors using a
sequence of algorithms, which can be described by a setting (see Section A.2.4
for the settings description).

DllSelection

This class displays a window that allows the user to choose which libraries
he wants to use in Groovster. It searches the folder where Groovster.exe is
located for compatible libraries. There are three kinds of libraries to select:
the analyzer, the graphical user interface and the measurement accessor. Once
the user clicks Ok the properties ma, gui and analyzer contains each an object
representing respectively the measurement accessor, the graphical user interface
and the analyzer. The method Init has to be called on each of them before using
them. If the user clicked Exit or closed the window the Exit property is set to
true.

FullScreenView

FullScreenView is a class that implements IGui and shows a full screen 3D view
of the scanned medium surface. It does not use the analyzer.

Frustum

This class represents a viewing frustum. Each time the view matrix or the
projection matrix changes it has to be updated using the Update method to
consider the new viewing frustum, which causes it to recompute its 6 planes. The
method ContainsBoundingBox allows to test if a given axis aligned bounding
box (AABB are explained in Section 6.2.3) is inside or outside the viewing
frustum or intersects with it.

Functions

All the global methods should be in this class, which provides only static meth-
ods. Any other class should have access to it.

Globals

Globals provide some global static method for the Yerlutz3D project.

GrooveAccessor

Access data from a groove file. A groove file contains a signal, which is basically
a list of groove points. The groove file also contains the sampling rate of the
signal.

54



GroovePoint

Class that contains a comparer to compare groove points with respect to their
value in X. This class can be extended to have one comparer for each dimension
(x,y,z).

HoldableButton

The holdable button looks like a standard Windows button except that it fires
events at regular intervals as long as the button is pressed. It behaves like the
keyboard, that means that when it is pressed it fires one event, then it waits
during a given delay and then it starts repeating events.

IniReader

The IniReader class provides an easy way to access configuration settings.
The operator [] as been defined so that the programmer can use the syntax
myIniReader[key] to access a setting given by its key.

InputBox

This class allows to display a message box in which the user has to edit a text
and can then click Ok or Cancel. This class was taken from [12].

MainClass

This is the starting class of Groovster. It contains the Main method, which is
the entry point of the program.

O3D Grooves

This is an extension to Object3D. It is used to draw the extracted grooves in
the 3D view.

O3D Meshed

This is an extension to Object3D. It contains an additional mesh to store the
vertices and indices.

O3D Plane

This is an extension to Object3D. It is used to draw the red rectangle in the 3D
view that represents the slice currently shown in the 2D view.

O3D Surface

This is an extension to O3D Meshed. It is designed to hold a portion of the
scanned surface as a 3D object that can be inserted in the scene. It creates
a prelighting of the vertices to reduce the size of the data transmitted to the
graphic card, so the scene lights should not be moved after the creation of
instances of that class.

55



Object3D

This is the base class for any 3D object. It has a position and basic methods
like Draw, which draws the object to the backbuffer or Restore, which should
be called when the device has been lost.

Octree

This class represents an octree (octrees are explained in Section 6.2.3). The
AddObject allows to add objects which implement the IBoundBoxed interface to
the octree. GetV isibleObjects gets all the visible objects from a given frustum.

OutputErrorImageFile

Converts the data that is contained in the groove file to an image that represents
the distribution of the errors that occured during the analysis process. For each
groove point in the groove file a pixel in the image represents its error level.
The higher the error is the darker is the pixel. The Perform method must be
called to do this operation.

OutputTxtFile

Converts the groove file to a simple text file that contains one groove bottom
position per line. The Perform method must be called to do this operation.

OutputWavFile

Creates a wave file (.wav) from a groove file. The Perform method must be
called to do this operation.

OutputXPosFile

Converts the groove file to an SGL xpos file that can be used later by LabView.
The Perform method must be called to do this operation.

ParamConfigForm

This class shows a form that allows the user to edit the Groovster settings.

Progress

Progress is a form that contains either a progress bar or a message. It is used to
show the progress of a long task. The Progress property sets the fill percentage
of the progress bar whereas the Message property sets the text to display.

RectangleAccessor

Reads measurements from a file data. The measurement file contains a height
map in SGL format. The data file contains a header followed by the height
points one by one in SGL format. This class loads only partially the data file. It
separates the whole measurement surface in many rectangles. If a measurement
that is not in memory is accessed, the class loads the rectangle that contains
the point in memory and unloads the least recently used rectangle.

56



Resampling

This class implements the resampling function used in LabView. It uses finite
response filters to do the resampling operation.

Scene3D

This class is used to represent a three-dimensional scene in which 3D objects
can be added and removed. AddV iewPort and RemoveV iewPort allow to add
or remove a view port from the scene’s view ports list. The method RenderAll
renders the scene to all the subscribed view ports.

SGLConverter

This class provides static methods to convert Labview’s SGL floating point value
to C#’s float and vice versa.

SimpleAccessor

Reads measurements from a file data. The measurement file contains a height
map in SGL format. The data file contains a header followed by the height
points one by one in SGL format. This class seeks in the file every time a point
is accessed.

SimpleGUI

This class is used to run the analyzer in the background without any graphical
display to speed things up. It only shows the console.

ViewPort3D

This class represents a view port that is like a camera in a 3d scene. The camera
is moving on a sphere and looking at its center. The sphere can be moved and
the radius can be varied. It is a control and can thus be placed on a form using
the Visual Studio designer.

Waveform

This class represents a wave form, which is basically a serie of samples with a
given frequency (sample rate).

WavFileAccessor

The WavFileAccessor class allows to create a wave file (.wav) from a given wave
form. The sampling frequency can be chosen between 11025Hz, 22050Hz and
44100Hz. The number of bits per sample is fixed to 16. The wave file contains
only one channel.

ZedGraphControl

ZedGraph is an open source library coded in C#. It provides a control called
ZedGraphControl that can be placed on a form. It is a really easy way for
plotting some curves. This library can be downloaded from [12].

57



6.4 Issues and Known Bugs

There are still some bugs in Groovster. This section shows a list of known bugs
and issues that are present in Groovster 1.0.

6.4.1 Device Lost Exception

Affects Gui1 and Full3D. This error makes Groovster crash down and occurs
in the 3D view when the application lost the graphic card because another
application took control over it. This can typically happen when the screen
saver starts, when hanging a second monitor or when the Windows login screen
is shown. To solve this problem, the class Scene3D should be modified.

6.4.2 Out of Memory Exception

Affects Gui1 and Full3D. This error occurs when the system is running out
of memory. Because the 3D view might consume a lot of memory when a large
portion of the surface is shown and that the program does not perform any
check upon available memory Groovster may crash down if there is not enough
RAM. To solve this problem, the class Controller3D should be modified.

Another cause of this problem is that Groovster consumes a lot of RAM for
many operations it performs. To try to avoid this trouble you should reduce
the size of allowed memory for the Rectangle Reader (which would by the way
make Groovster run slower), and create neither any PNG file nor any XPOS file.
If the surface you analyse contains more than about 2 billions of measurement
points and you ask to produce some png files, Groovster will inevitably crash
down because the size of the internal bitmap will be over about 2GB, which is
the larger data set that the Bitmap class can handle.

6.4.3 Incomplete Surface

Affects Gui1 and Full3D. This issue causes the scanned surface to be truncated
at the right and the far borders (X+, time+). This is due to the fact that only
complete squares of 64x64 measurements are loaded into the 3D view, so if the
number of measurement points in the width of the surface is not divisible by
64, the remaining points will not be loaded. The same happens for the time
direction. To fix that, the class Controller3D should be modified.

6.5 Future

As previously mentionned the software is designed to be easily adapted to be
able to extract sound from other mechanical media. This section gives guidelines
to extend Groovster for some other media. Please refer to Appendix A.3 to get
more information about extending Groovster.

6.5.1 Gramophonic Records

Scanned with the 3D scanner this media produces a measured surface very
similar to the dictation belts. There is thus very few adaptations to perform.

58



• Create a new analyzer by copying the existing DictabeltAnalyzer.

• Adapt the analyzer to match the groove shape of a gramophonic record.

• Change the RPM setting to the actual rotation speed of the gramophonic
record.

• Change the Length setting to circumference at the average radius of the
record.

6.5.2 Phonographic Cylinders

• Create a new analyzer by copying the existing DictabeltAnalyzer.

• Adapt the analyzer to match the groove shape of a phonographic cylinder.

• Adapt the analyzer to take the height displacement in consideration and
not the width displacement anymore.

• Change the RPM setting to the actual rotation speed of the phonographic
cylinder.

• Change the Length setting to circumference of the cylinder.

6.5.3 Phonographic Records

The phonographic records in term of software extension is inbetween phono-
graphic cylinders (Section 6.5.2) and gramophonic records (Section 6.5.1). It
should be easy to merge these two analyzers to get a new one capable of ana-
lyzing phonographic records.

6.5.4 Stereophonic Records

The existing dictabelt analyzer puts in its groove file the position of the groove
in width, height and time. By some shape adaptations, it should be easy to
extract the two channels. Of course the wave writer has to be modified to
produce a wave file that contains two channels.

59



Figure 6.2: Libraries selection window

60



Figure 6.3: Surface triangulation

61



Figure 6.4: Lightings Both picture show the same part of the model. The left one is

lighted and the right one is not.

Figure 6.5: Quadtree example Each cell of the quadtree is split in 4 smaller cells

until a given nesting level.

62



Figure 6.6: Quadtree containng objects The red cells are the cells that the object

crosses and the yellow one are the smallest cells that fully contain the objects.

63



Chapter 7

Tests and results

7.1 Signals Comparision

Figure 7.1 shows an important comparison of signals at different frequencies
measured at different places in the measurement process and after data analysis
process.

Recorder Input is the sound generated with the sound card that is sent into
the dictation belt machine. The signal measured across the recording needle is
called Recording Needle. Optical Extraction is obtained using the 3D measur-
ing technique and the Groovster data analysis software. The measured at the
playback needle is called Playback Needle. The Speaker Output corresponds to
the signal measured at the dictation belt player speaker output. Note that the
amplitudes were scaled and therefore they can not be compared.

A first observation is that the signals read out are closer to the input signal
at higher frequencies than at lower frequencies. The system might be designed
to have the best frequency response, with the lowest distortion, at frequencies
higher than 1kHz. This would be very surprising since the human voice has a
lot, if not most, frequency components below 1kHz.

In addition the signal at the recording needle at 100Hz and 400Hz is clearly
the derivative of the input signal. This becomes less visible as the frequency
goes higher. This means that the electronics between the recorder input and
the recording needle boosts high frequencies by taking the derivative.

Since the recording needle is a damped harmonic oscillator one would expect
the signal on the belt to be the integral of the signal across the recording needle.
At 400Hz and above this appears to be the case. At 100Hz the playback needle
signal is very similar than the recorded signal. This suggests that the recording
needle movement is driven by the input voltage as opposed to the integral of
the input voltage signal. 200Hz might be the limit between the two.

The input signal is definitely deformed by the electronic components before
it is applied to the recording needle. This non-linear distortion is introduced by
the dictation belt recorder due to the need to provide automatic gain control.
It seems that the signal applied on the recording needle is symmetric, at least
above 200Hz. This symmetry implies an X,Y correction curve could be used in
the time domain to get back to the original signal. If it is possible to get from
the optical extraction to the signal applied at the recording needle it might be

64



1600 Hz 3200 Hz

Recorder Input

Recording Needle

Optical Extraction

Playback Needle

Speaker Output

400 Hz 800 Hz

Recorder Input

Recording Needle

Optical Extraction

Playback Needle

Speaker Output

100 Hz 200 Hz

Recorder Input

Recording Needle

Optical Extraction

Playback Needle

Speaker Output

Figure 7.1: Signal amplitude comparison.65



possible to use a correction curve to get back to the original signal.
From this comparison it is hard to tell with certitude what is really on present

on the dictation belt. The frequency response of the recording pickup is not
known and since different results are experienced when comparing the optical
extraction and the signal measured at the playback needle it is even hard to
tell which is the ”true” representation of the groove on the belt. The optical
readout is probably a more accurate representation of what is on the belt. Note
that the different features that can be seen in the optical extraction but not on
the recording needle nor on the playback needle are not at all random and are
therefore likely to be real features present on the dictation belt. Although some
high frequency noise is experienced in the optical measured data, the optical
method has a much wider frequency response than the playback needle, which
means that it does not tend to average the groove movement like the playback
needle does.

7.2 Measurement Quality

The output wave form of the data analysis process shows high frequency noise.
Some extend of it is removed by the low-pass filter, but it can still be heard in
the audio file. This noise is probably introduced either by the data acquisition
process or the data analysis process. The noise of the measurement points is
relatively high compared to the groove depth; it is around 10%. Since the noise
level is lower when the stage is not moving it is either introduced by the linear
stage or the trigger. The CHR handbook states that the response time of the
trigger is around 10µs independently of the sampling frequency. This means that
the probe rate needs to be synchronized with the incoming trigger. Previous
measurements with a different motion controller and trigger signal generator
have shown that the synchronization is not done properly by the CHR. The
manufacturer appears to know that problem but was not able to give a solution
to fix that.

7.3 Sound Quality

The sound quality is comparable to the speaker output. No noise reduction
filters were used on the extracted sound files. Since the noise is probably in-
troduced by the measurement process or the data acquisition process, there is
no point in removing the noise at this point. The source of the noise has to be
identified first. Once it has been shown that the noise level was reduced to a
maximum, noise reduction filters could be applied to filter the residual noise.

7.4 Processing Time

The data acquisition process takes about 50 hours to measure one minute of
sound at a sampling frequency of 50.4kHz. The time needed to analyze such
a data file, which is about 200MB, is several orders of magnitude lower. On a
nowadays workstation it takes less than 20 minutes. It can go down to 5 minutes
depending on the data analysis algorithm that is used.

66



In this project no particular emphasis was placed in the speed of execution
of the data analysis process. The architecture of the software was designed to
be modular in order to make it very easy to extend the software. This adds
some computational overhead. Since the data acquisition takes so much time
there no point in optimizing the execution time of the analysis process.

67



Chapter 8

Conclusion

The results obtained show that the 3D metrology technique to measure dictation
belt surfaces and extract the groove displacement works. The sound can be
extracted without any contact with the surface and with a sufficient quality to
hear the speech of someone taking.

The quality of the data acquisition process and methodology needs to be
improved and refined in order to get a better quality of the measurements. An
alternative scanning strategy could be used to reduce the high frequency noise
introduced during the measurement process. Currently data is acquired while
the linear stage is moving with constant velocity and the rotational stage is
incremented between each slice. Instead one could scan the belt surface in the
opposite way, i.e. gather data with constant angular motion over one revolution
and then shift the linear stage by some small value. This modification to the
measurement process could have a big impact on the result by reducing the high
frequency noise.

The data analysis might also be improved by considereing different groove
detection techniques and improving the existing ones. Another algorithm would
be to fit a sphere in the groove over several groove slices to get the position of
the groove. The sphere is probably a better approximation of the needle’s shape
than a simple 2D circle or parabola, but it would lead to a much more complex
algorithm. It is not expected to reduce the noise, but some distortion due to the
fact that the implemented algorithms determine the groove position not exactly
where it is when the grooves move in the higher frequencies range.

The software created is a powerful tool that can be easily modified and ex-
tended to extract the sound of other kinds of mechanical media. Its different
views have and will really help for the development of new features. The esti-
mated time to add capabilities for scanning another type of media is between
one and five days. The user can then really focus on what would make the sound
better.

68



Chapter 9

Acknowledgements

The authors would like to thank in particular Carl Haber for his advices, help,
support, patience and especially for giving them the opportunity to do this
work at the Lawrence Berkeley Lab. They also thank Prof. Ottar Johnsen for
having taken the time to visit them and discuss several signal processing issues.
They thank Prof. Frédéric ”Slangster” Bapst for his comments and advices
and Vitaliy Fadeyev for his introduction to the project. Last but not least the
University of Applied Sciences of Fribourg, which has partially funded the stay
of the autors.

69



Bibliography

[1] Fadeyev, V., Haber, C., ”The Reconstruction of Mechanically Recorded
Sound by Image Processing and Analysis”, J. Audio Eng. Soc, vol. 51, no.
12, pp. 1172-1185 (2003 Dec.).

[2] Fadeyev, V. et al., ”Reconstruction of Mechanically Recorded Sound from
an Edison Cylinder using Three Dimensional Non-Contact Optical Surface
Metrology”, J. Audio Eng. Soc., vol. 53, no.6, pp.485-508 (2005 June).

[3] Cavaglieri, S., Johnsen, O., and Bapst, F., ”Proc of AES 20th International
Conference”, Budapest, Hungary 2001, Oct 5-7.

[4] Johnsen, O., ”Le changement de fréquence d’échantillonnage et le
suréchantillonnage”, Ecole d’Ingénieurs de Fribourg, March 2004.

[5] Corle, T.R., and Kino, G.S., ”Confocal Scanning Optical Microscopy and
Related Imaging Systems”, Academic Press, San Diego, 1996.

[6] Mitra, S., K., ”Digital Signal Processing, A Computer-Based Approach,
Second Edition”, McGraw-Hill International Edition, 2001.

[7] Press, W., H., Teukolsky, S., A., Vetterling, W., T., Flannery, B., P., ”Nu-
merical Recipes in C, The Art of Scientific Computing, Second Edition”,
Cambridge University Press, 1988-1992

[8] STIL S.A., ”CHR 450, Operation and maintenance manual”.

[9] National Instruments, Test and measurement, http://www.ni.com.

[10] Wikipedia, The Free Encyclopedia, http://en.wikipedia.org.

[11] Multi-threading in .NET, Introduction and Suggestions,
http://www.yoda.arachsys.com/csharp/threads/.

[12] Source Forge, http://www.sourceforge.net.

70



Appendix A

Groovster User guide

A.1 Installation

A.1.1 Requirements

In order to run Groovster you must have the following software :

• Microsoft .NET Framework 1.1

• Microsoft DirectX 9

• National Instrument Measurement Studio 7.0

The first two are free for use and can be downloaded from www.microsoft.com,
Microsoft’s website. If one of these three components is not currently installed
on your computer, please refer to the following sections.

Groovster was tested on a PC running Windows XP with a 1.8GHz 32-bit
processor, 1024GB RAM, stripping serial ATA and a ATI with 128MB memory
as graphic card.

A.1.2 Microsoft .NET Framework

The .NET Framework is required to run any program written in a .NET lan-
guage. It is basically a virtual machine that transcripts the CIL (common inter-
mediate language) into binary code that can be fed to the processor. Groovster
uses the version 1.1 of this framework, which is free and can be downloaded
from Microsoft’s website (www.microsoft.com). Please follow their installation
instructions.

A.1.3 Microsoft DirectX 9

DirectX 9 is an API (application programming interface) used to provide hard-
ware direct access and emulate features that are not supported by it. Groovster
uses Direct3D, a part of DirectX, to access the graphic card to render its 3D
scenes with an acceptable frame rate. DirectX is free and can be downloaded
from Microsoft’s website (www.microsoft.com). Please follow their installation
instructions. If you experience troubles running Groovster, you might need to
install the DirectX 9 SDK april 2005.

71



A.1.4 National Instrument Measurement Studio

Measurement Studio is a library dedicated to signal processing, automation
and much more. You have to install it before running Groovster. You can
download an evaluation version on www.ni.com. Please follow their installation
instruction.

A.1.5 Groovster

Once you have installed the .NET Framework and DirectX 9, you should be
able to run Groovster without any special handling. You may want to copy the
whole Groovster’s directory to your hard disk drive.

A.2 Using Groovster

When you start Groovster you get first a window asking you to select the li-
braries you want to use. The analyzer library is actually the algorithm that will
be applied on your data to extract the sound or fix some scratches. The GUI
is the graphical user interface you want to use and the measurement accessor
defines the way your data file are going to be read. The Groovster’s existing
libraries are described in sections A.2.1, A.2.2 and A.2.3.

On this starting window there is a button labelled ”Settings”. When clicking
it the configuration window opens and allows to set the values for any setting. To
change one of them double-click on it. The meaning of each setting is explained
in section A.2.4. Once you close this window it will ask you if you want to save
the changes or not. If you click ”Yes” the newly defined settings will be used
for all future operations. Settings are saved in ”config.xml”. You can backup
this file if you want to restore old settings.

If you start Groovster passing some command line arguments it will assume
that you want to run it without graphical user interface. This allow to create
batch file to automate a serie of analyses. The syntax used to call Groovster in
background mode is the following:

groovster.exe analyzer accessor file settingchange*

• analyzer : path to the library (dll) that contains the analyzer you want to
use.

• accessor : path to the library (dll) that contains the measurement accessor
you want to use.

• file : path to the measurement file you want to analyze.

• settingchange : new setting definition. The syntax is section:key:value.
Example: ”DictabeltAnalyzer:OutputXPosFile:off”. There can be zero,
one or many setting changes separated by spaces.

A.2.1 Analyzers

Dictabelt Analyzer

The dictabelt analyzer is designed to extract the sound from a dictation belt.
It analyzes a measurement file where the time is spanned over the Y axis and

72



the groove displacement over the X axis. It produces a groove file that contains
information about the groove position and from this file it generates the sound.

Dictabelt Corrector

The dictabelt corrector is an analyzer that takes as input a file that contains
measured data from a dictation belt where the time is spanned over the Y axis
and the groove displacement over the X axis. It produces another measurement
file that is supposed to contain the same data without any measurement errors
and no warpage.

A.2.2 GUIs

SimpleUI

This GUI simply display a console that will show debug information. Select
”Open” in the ”File” menu, pick your measurement file and the analysis algo-
rithm should start. You can just close the window when it is over. At any time
you can save the content of the console by clicking ”File” and ”Save”.

GUI1

GUI1 is the most sophisticated GUI provided with groovster. There are three
tabs displaying either the surface, the sound or the console explained in the
following paragraphs. The analyzer execution can be controlled with the buttons
”play”, ”pause” and ”stop”. The option ”Automatic pausing” in the ”Options”
menu allows the algorithm to pause itself when it thinks it should (decided by
the analyzer’s programmer).

The surface panel is split in two parts. The left part shows a 3D view of
your measurements file and the right part shows a slice of it. A red, translucent
rectangle shows in the 3D view what is shown in the slice view. You can move
and resize this rectangle using the three control circles underneath the slice
view. The leftmost circle is used to move the rectangle left, right, up and down.
The center button of this circle allows to scale vertically the rectangle according
the slice’s profile. The middle circle is used to move the rectangle forward and
backward. You can enter a slice number to jump over the surface. With the
rightmost circle you can scale horizontally or vertically the rectangle. You can
also zoom in the slice view by spanning a rectangle with the mouse on the area
you want to zoom into. Right click to unzoom. In the ”Options” menu you may
want to enable the slice tracking, which will cause the camera to move together
with the red rectangle.

In the 3D view you can move the camera using the mouse. There are two
moving : translation represented by a wind rose and rotation represented by
two arrows. The following table shows the associated movement for each mouse
axis in both modes.

Translation mode Rotation mode

X axis Move the surface left or right Rotate horizontally
Y axis Move the surface forwards or

backwards
Rotate vertically

Wheel Move the surface up or down Zoom in or out
Right button Switch to Rotation mode Switch to Translation mode

73



The sound view shows the waveform of the extracted groove. You can zoom
it by spanning a rectangle with the mouse on the area you want to zoom into.
You can also pan it by holding the shift key and dragging the mouse over. At a
given magnification it will start to display error bars for each extracted point.
These error bars are given by the analyzer algorithm.

The console panel is the text output of the analyzer algorithm, the same as
SimpleGUI.

Full3D

The analyzer you choose has no effect with this GUI because it is just not used
at all. Is is only a full screen 3D view of the surface. Please refer to section A.2.2
for the camera movement.

A.2.3 Measurement Accessors

SimpleAccessor

This was the first designed accessor. It seeks the file for each measurement
required by both the analyzer and the graphical user interface. You should
prefer using the RectangleAccessor.

RecangleAccessor

When either the analyzer or the graphical user interface requires a measurement
point the RectangleAccessor will check if this point is currently loaded into the
system memory. If it is not it will load a whole rectangle of the surface into the
system memory so that subsequent accesses in the same region will be much
faster.

When the maximum number of loaded rectangle is reached, the Rectan-
gleAccessor will unload the least recently used to make space for the next one
to be loaded. The size of the rectangles and the maximal memory usage are
given by some settings described in section A.2.4.

A.2.4 Settings

These section enumerates Groovster’s settings and provides a short explanation
for each of them.

74



Global

Setting Description
RPM Rotations per minute of the scanned

medium
MediumCircumference Circumference of the scanned media in

micrometers
TemporaryFileExtension File extension used for the temporary

files
PreprocessedFileExtension File extension used for the preprocessed

files
DataFileExtension File extension used for the measure-

ment file
GrooveFileExtension File extension used for the groove file

RectangleAccessor

Setting Description
RectWidth Number of measurement points in

width of a measurement rectangle
RectHeight Number of measurement points in

height of a measurement rectangle
MaxMemoryUsage Default maximum memory usage al-

lowed in bytes, determines the maxi-
mum number of rectangles in memory

AccessMode (”R” or ”RW”) Default access mode.
RW creates a temporary file.

75



DictabeltAnalyzer

Setting Description
Max DZ in micrometers
Valley Threshold in micrometers
Minimum Groove Height in micrometers
Valley Width in micrometers
Poly Width in micrometers
Poly Degree Order of the first polynom to fit
Min Valley Height micrometers
ApplyLowPassFilter (”0” or ”1”)
LowPassCutoffFreq Hz
ApplyHighPassFilter (”0” or ”1”)
HighPassCutoffFreq Hz
OutputSamplingFrequency
MaximumBadRegionTimeAllowed Maximum time in seconds the groove

can be unfound without warning or cor-
rection by the BadGrooveFilter

MaximumRemovedSound Maximum sound portion (in seconds)
that will be removed at the beginning
or at the end of the detected groove of
it is detected as bad

GrooveMappingWindowSize
OutputWavFile (”on” or ”off”) Tells if the analyzer

should produce a wave file
OutputXPosFile (”on” or ”off”) Tells if the analyzer

should produce a xpos file
OutputGroovePngFile (”on” or ”off”) Tells if the analyzer

should produce a groove png file
OutputErrorPngFile (”on” or ”off”) Test if the analyzer

should produce an error png file
GrooveRadius microns
CP.PointMaxDistance Circle probe’s point maximal accept-

able distance in micrometers
CP.MinNumberOfPoints Circle probe’s minimal acceptable num-

ber of point on the circle

DictabeltCorrector

Setting Description
Sequence (”n,n,n,...”) Algorithms sequence. n =

1 to 5 for the different algorithm, n =
0 to normalize the surface.

FullScreenView

Setting Description
AutomaticCamera (”on” or ”off”) Indicates if the camera

is travelling itself accross the surface

76



Controller3D

Setting Description
GrooveYOffset Height offset in micrometers of the

groove in the 3D display
GrooveDisplay (”on” or ”off”) Indicates if the groove

is displayed in the 3D view

Yerlutz3D

Setting Description
FillMode (”solid”, ”wireframe” or ”points”) 3D

triangles fill mode
ZBufferDepth (”16”, ”24” or ”32”) Depth in bit of the

Z buffer
LightVector (”x,y,z”) Direction of the light

A.3 Adding New Features

Groovster is designed to be extended without having to recompile its source
code. This section explains how to create new features. The basic concept is
to create a new class library, which contains at least one class that implements
some specific interface. Compiling such a project will result in a dynamically
linked library (dll). By putting this dll in the same folder as the Groovster
executable file it will automatically be taken in consideration at the next run.

A.3.1 Adding an Analyzer

To create a new analyzer you have to create a class library, which contains
a class that implements the interface ”IAnalyzer” defined in ”Globals.dll”. An
analyzer should create its own thread to run its algorithm because it needs to be
able to be started, stopped, paused and resumed. Accessing the measurements
via a measurement accessor is thread safe. The following sections describe the
methods and the properties to implement. Notice that the constructor should
not perform any operation since the library selection has to construct an instance
of each analyzer, measurement accessor and graphical user interface to be able
to display them in its lists.

void Init(IMeasurementAccessor)

This method is called when the user clicked ”Ok” in the libraries selection
window. A reference to the actual measurement accessor is passed as parameter.
Put your initialization code here.

string DescName (get)

This property is used to retrieve the name of the analyzer, which should be a
string not longer than about 20 characters.

77



string DescDescription (get)

This property is used to retrieve a short description of the analyzer. It should
be a string of about 100 characters.

void Start()

This method is called when the graphical user interface wants the analyzer
algorithm to start. Usually you should put code that starts your analyzer thread
in this method.

void Stop()

This method is called when the graphical user interface wants the analyzer
algorithm to shut down. Usually you should put code that kills your analyzer
thread in this method.

void Pause()

This method is called when the graphical user interface wants the analyzer
algorithm to pause. Usually you should put code that suspends your analyzer
thread in this method.

void Resume()

This method is called when the graphical user interface wants the analyzer
algorithm to resume after it has been paused. Usually you should put code that
resumes your analyzer thread in this method.

void Join()

This method must make the caller wait until your analyzer thread is stopped.
Notice that if you are not running your analyzer algorithm in a separate thread,
this method can return immediateley. Usually the code for this method resemble
as the following one, where myTread is your analyzer thread.

1 public void Join ( )
2 {
3 myThread . Join ( ) ;
4 }

AnalyzerState State (get)

This method should return the current state of the algorithm. The different
states are

• Running

• Stopped

• Paused

78



Events

An analyzer can raise 4 kinds of event. Thus it has to expose the corresponding
delegates that it is calling when an event occurs. The event listeners usually
register to an event handler this way:

1 // r e g i s t e r a new event handler
2 myAnalyzer . AnEventHandler +=
3 new EventHandler ( myDelegate ) ;

The operator += forces the analyzer to implement both get and set for this
property. The following list shows the events that can be raised by the analyzer,
and that have therefore to have a public property that allows to register to them.

• DataReadyEventHandler SliceDataReadyEvent : allows to send a set of
interesting measurement points.

• TextEventHandler TextEvent : allows to send some text.

• ProgressEventHandler ProgressEvent : allows to indicate a progress.

• GrooveDataEventHandler GrooveDataEvent : allows to send a set of in-
teresting groove points.

A.3.2 Adding a Graphic User Interface

To create an new graphical user interface you have to create a class library, which
contains a class that implements the interface ”IGui” defined in ”Globals.dll”.
The following sections describe the methods and the properties that have to be
implemented in order to make it work properly. Notice that the constructor
should not perform any operation since the library selection has to construct an
instance of each analyzer, measurement accessor and graphical user interface to
be able to display them in its lists.

void Init(IAnalyzer, IMeasurementAccessor)

This method is called when the user clicked ”Ok” in the libraries selection
window. A reference to the actual analyzer and measurement accessor are passed
as parameter. Put your initialization code here.

string DescName (get)

This property is used to retrieve the name of the graphical user interface, which
should be a string not longer than about 20 characters.

string DescDescription (get)

This property is used to retrieve a short description of the graphical user inter-
face. It should be a string of about 100 characters.

79



A.3.3 void StartGui()

This method is called when the user clicked ”Ok” in the libraries selection win-
dow and after ”Init()” was called. This method should not terminate before the
user exits your graphical user interface. If your IGui implementation extends
System.Windows.Form you may probably want to call this.ShowDialog(),
which is actually blocking.

A.3.4 Adding a Measurement Accessor

To create an new measurement accessor you have to create a class library, which
contains a class that implements the interface ”IMeasurementAccessor” defined
in ”Globals.dll”. Getting and setting measurements must be thread
safe. The following sections describe the methods and the properties to imple-
ment in order to make it work properly. Notice that the constructor should not
perform any operation since the library selection has to construct an instance
of each analyzer, measurement accessor and graphical user interface to be able
to display them in its lists.

string DescName (get)

This property is used to retrieve the name of the measurement accessor, which
should be a string not longer than about 20 characters.

string DescDescription (get)

This property is used to retrieve a short description of the measurement accessor.
It should be a string of about 100 characters.

string File (get/set)

This property gets or sets the measurements file name. Since there is no dedi-
cated method to open the file before the user might call ”GetHeight” for exam-
ple, it should open the file when a property set is performed. Do not forget to
close the previous file if a property set was called before.

bool IsPreprocessed (get)

This property is used to know if the measurement file has been preprocessed or
not. Preprocessed files have the extension ”.pre” and raw files have the extension
”.dat”. It has to return true if the file is preprocessed or false otherwise.

GrooveAccessor GrooveAccessor (get)

This property allows to get a reference to the singleton groove accessor.

float GetHeight(int, int)

This method is called to retrieve the value of a measurement given its x (pa-
rameter 1) and y (parameter 2) indices. It has to return a floating point value
corresponding to the height of the measurement point in micrometers.

80



float[] GetHeights(Point[])

This method is called to retrieve a set of measurement point values given their x
and y indices wrapped in a System.Drawing.Point structure. It has to return
an array of the heights in micrometers corresponding to each point in the same
order.

void SetHeight(int, int, float)

This method is called to set the value of a measurement point given its x (pa-
rameter 1) and y (parameter 2) indices. The new height is given in micrometers.

float this[int x, int y] (get/set)

This property defines the operator [] on the measurement accessor class you are
coding. It allows to access the measurement point in a more convinient way.

1 // t h i s code
2 myAccessor . SetHeight (3 , 5 , 133 .1 f ) ;
3 f loat x = myAccessor . GetHeight ( 1 0 , 4 ) ;
4 // i s e qu i v a l en t to t h i s one
5 myAccessor [ 3 , 5 ] = 133 .1 f ;
6 f loat x = myAccessor [ 1 0 , 4 ] ;

int SizeX (get)

This property is used to know the number of measurement points in the x
direction.

int SizeY (get)

This property is used to know the number of measurement points in the y
direction.

double UnitSizeX (get)

This property is used to know the distance in micrometers in the x direction
between two adjacent measurement points.

double UnitSizeY (get)

This property is used to know the distance in micrometers in the y direction
between two adjacent measurement points.

bool IsMeasurementError(int, int)

This method is called to know if a measurement value, given its x (parameter
1) and y (parameter 2) indices is an error or not. This has to return true if
the measurement point is marked as an error or false otherwise. If you are not
using measurement errors you can always return false.

81



void SetMeasurementError(int, int, bool)

This method is called to mark or unmark a measurement point given by its x
(parameter 1) and y (parameter 2) indices as an error. The 3rd parameter is
set to true to mark the point as an error or false to unmark. If you are not
using measurement errors you can leave the code of this method empty.

82



Appendix B

Class Diagrams

B.1 Binaries

This section describes the classes and interfaces contained in each binary file
(also called assembly) of Groovster.

Groovster.exe DllSelection
MainClass
ParamConfigForm

Globall.dll AnalyzerDataReadyEventArgs
AnalyzerGrooveDataEventArgs
AnalyzerProgressEventArgs
AnalyzerTextEventArgs
Functions
GrooveAccessor
GroovePoint
IAnalyzer
IDescriptible
IGui
IMeasurementAccessor
IPointSet
IniReader
InputBox
Resampling
SGLConverter
WavFileAccessor
Waveform

DictabeltAnalyzer.dll ApplyBadGroovesFilter
BitMapWriter
CircleFit
CircleOp
DictabeltAnalyzer
OutputErrorImageFile
OutputTxtFile
OutputWavFile
OutputXPosFile

83



DictabeltCorrector.dll DictabeltCorrector
GUI1.dll Controller3D

DictabeltAnalyzerView
FullScreenView
HoldableButton
O3D Grooves
O3D Meshed
O3D Plane
O3D Surface
Progress

CmdUi1.dll SimpleGUI
SimpleAccessor.dll SimpleAccessor
RectangleAccessor.dll RectangleAccessor
Yerlutz3D.dll BoundingBox

Frustum
Globals
IBoundBoxed
Object3D
Octree
Scene3D
ViewPort3D

B.2 Dependencies

This section describes the dependencies between the binaries (also called assem-
blies) of Groovster. The dependencies are represented in the figure B.1

B.3 Part Class Diagrams

This section shows the class diagrams for each part of Groovster.

84



D
ic

ta
b
el

tA
n
al

yz
er

.d
ll

D
ic

ta
b
el

tC
o
rr

ec
to

r.
d
ll

G
lo

b
al

.d
ll

G
ro

ov
st

er
.e

xe
G

U
I1

.d
ll

R
ec

ta
n
g
le

A
cc

es
so

r.
d
ll

S
im

p
le

A
cc

es
so

r.
d
ll

S
im

p
le

U
I.

d
ll

Ye
rl
u
tz

3
D

.d
ll

D
ir
ec

tX
M

ea
su

re
m

en
tS

tu
d
io

s

DictabeltAnalyzer.dll - x x
DictabeltCorrector.dll - x x
Global.dll - x
Groovster.exe x -
GUI1.dll x - x
RectangleAccessor.dll x -
SimpleAccessor.dll x -
SimpleUI.dll x -
Yerlutz3D.dll x - x

Depends on

Figure B.1: Dependencies between the assemblies

85



Functions

GetAssemblyDir()
ChangeFileExtension()
get_ConfigFilePath()
set_ConfigFilePath()

IDesctiptible

get_DescName()
get_DescDescription()

SimpleAccessor

Form

RectangleAccessor

IGui

Init()
StartGui()

IAnalyzer

Start()
Stop()
Pause()
Resume()
Init()
get_State()
Join()
get_SliceDataReadyEvent()
set_SliceDataReadyEvent()
get_TextEvent()
set_TextEvent()
get_ProgressEvent()
set_ProgressEvent()
get_GrooveDataEvent()
set_GrooveDataEvent()

MainClass

Main()

DictabeltAnalyzerViewSimpleGUI

DictabeltAnalyzer

FullScreenView

IMeasurementAccessor

Init()
GetHeight()
GetHeights()
SetHeight()
IsMeasurementError()
SetMeasurementError()
get_File()
set_File()
get_SizeX()
get_SizeY()
get_UnitSizeX()
get_UnitSizeY()
get_GrooveAccessor()
get_IsPreprocessed()

DictabeltCorrector

Functions is a class, 
which provides some 
static methods that 
many classes use.

 

Figure B.2: Global class diagram Shows the main architecture of Groovster.

86



IDesctiptible

IDisposable

IMeasurementAccessor
SimpleAccessor

Init()
GetHeight()
GetHeights()
SetHeight()
IsMeasurementError()
SetMeasurementError()
SetFile()
get_SizeX()
get_SizeY()
get_UnitSizeX()
get_UnitSizeY()
Dispose()

GroovePoint
x
y
z
error

IsFitError()
IsGrooveBottomNotFoundError()
IsParabolFitError()
Equals()
GetHasCode()
DifferenceSmallerThan()
operator ==()
operator !=()

GrooveAccessor

HasGrooveFile()
get_NumberOfPoints()
set_NumberOfPoints()
get_SampleRate()
SetPoint()
GetPoint()
Dispose()

IniReader

get_operator []()
set_operator []()
GetIntValue()
GetDoubleValue()
Dispose()

SGLConverter

SGLToFloat()
FloatToSGL()

 
Figure B.3: Class diagram for Simple Accessor

87



IDisposable

IDesctiptible

IMeasurementAccessor

IniReader

get_operator []()
set_operator []()
GetIntValue()
GetDoubleValue()
Dispose()

GroovePoint
x
y
z
error

IsFitError()
IsGrooveBottomNotFoundError()
IsParabolFitError()
Equals()
GetHasCode()
DifferenceSmallerThan()
operator ==()
operator !=()

RectangleAccessor

Init()
GetHeight()
GetHeights()
SetHeight()
IsMeasurementError()
SetMeasurementError()
SetFile()
get_SizeX()
get_SizeY()
get_UnitSizeX()
get_UnitSizeY()
Dispose()

GrooveAccessor

HasGrooveFile()
get_NumberOfPoints()
set_NumberOfPoints()
get_SampleRate()
SetPoint()
GetPoint()
Dispose()

SGLConverter

SGLToFloat()
FloatToSGL()

 
Figure B.4: Class diagram for Rectangle Accessor

88



IDesctiptible
IGui

Form

SimpleGUI

Init()
StartGui()
get_DescName()
get_DescDescription()

AnalyzerProgressEventArgs

get_ModifiedPoints()
get_PointSet()

AnalyzerTextEventArgs

get_Text()

IMeasurementAccessor

Init()
GetHeight()
GetHeights()
SetHeight()
IsMeasurementError()
SetMeasurementError()
get_File()
set_File()
get_SizeX()
get_SizeY()
get_UnitSizeX()
get_UnitSizeY()
get_GrooveAccessor()
get_IsPreprocessed()

IAnalyzer

Start()
Stop()
Pause()
Resume()
Init()
get_State()
Join()
get_SliceDataReadyEvent()
set_SliceDataReadyEvent()
get_TextEvent()
set_TextEvent()
get_ProgressEvent()
set_ProgressEvent()
get_GrooveDataEvent()
set_GrooveDataEvent()

EventArgs

IDisposable

IPointSet

get_operator[]()
set_operator[]()
get_Count()
get_YIndex()
set_YIndex()

GroovePoint

AnalyzerGrooveDataEventArgs

get_GrooveIndices()
set_GrooveIndices()

AnalyzerDataReadyEventArgs

get_Title()
set_Title()
get_Progress()
set_Progress()

GrooveAccessor

IniReader

get_operator []()
set_operator []()
GetIntValue()
GetDoubleValue()
Dispose()

Figure B.5: Class diagram for SimpleUI

89



IniReader

get_operator []()
set_operator []()
GetIntValue()
GetDoubleValue()
Dispose()

IAnalyzer

IDesctiptible

BitmapWriter

SetPixel()
Dispose()
LinearGradient()

CircleFit

Compute()
ComputeY()

CircleOp

CircleFromPPR()
DistanceToCircle()

ParabolicFitMinDx

ParabolicFitMinDxFitness()
Compute()

DictabeltAnalyzer

Start()
Stop()
Pause()
Resume()
Init()
Join()
get_State()
get_SliceDataReadyEvent()
set_SliceDataReadyEvent()
get_TextEvent()
set_TextEvent()
get_ProgressEvent()
set_ProgressEvent()
get_GrooveDataEvent()
set_GrooveDataEvent()
get_DescName()
get_DescDescription()

AnalyzerDataReadyEventArgs

get_Title()
set_Title()
get_Progress()
set_Progress()

AnalyzerGrooveDataEventArgs

get_GrooveIndices()
set_GrooveIndices()

AnalyzerProgressEventArgs

get_ModifiedPoints()
get_PointSet()

AnalyzerTextEventArgs

get_Text()

EventArgs

IPointSet

get_operator[]()
set_operator[]()
get_Count()
get_YIndex()
set_YIndex()

Point3D

get_X()
set_X()
get_Y()
set_Y()
get_Z()
set_Z()

PointSet

get_operator[]()
set_operator[]()
get_Count()
get_YIndex()
set_YIndex()
Add()

MeasurementSet

get_operator[]()
set_operator[]()
get_Count()
get_YIndex()
set_YIndex()
IsError()
SetError()

MeasurementPoint3D

get_X()
set_X()
get_Y()
set_Y()
get_Z()
set_Z()

GrooveAccessor

GroovePoint

Waveform

get_SampleRate()
set_SampleRate()
get_T0()
set_T0()
get_Y()
set_Y()
get_Dt()
set_Dt()
get_Duration()
set_Duration()
get_NumberOfSamples()
GetSampleByIndex()
GetSampleByTime()
Normalize()
GetData()

IMeasurementAccessor

OutputErrorImageFile

Perform()

OutputWavFile

Perform()

OutputXPosFile

Perform()

Resampling

Resample()

IDisposable

 Figure B.6: Class diagram for DictabeltAnalyzer

90



IDesctiptible

IAnalyzer

IMeasurementAccessor

Init()
GetHeight()
GetHeights()
SetHeight()
IsMeasurementError()
SetMeasurementError()
get_File()
set_File()
get_SizeX()
get_SizeY()
get_UnitSizeX()
get_UnitSizeY()
get_GrooveAccessor()
get_IsPreprocessed()

DictabeltCorrector

Start()
Stop()
Pause()
Resume()
Init()
get_State()
Join()
get_SliceDataReadyEvent()
set_SliceDataReadyEvent()
get_TextEvent()
set_TextEvent()
get_ProgressEvent()
set_ProgressEvent()
get_GrooveDataEvent()
set_GrooveDataEvent()
get_DescName()
get_DescDescription()

AnalyzerDataReadyEventArgs

get_Title()
set_Title()
get_Progress()
set_Progress()

IPointSet

get_operator[]()
set_operator[]()
get_Count()
get_YIndex()
set_YIndex()

PointSet

get_operator[]()
set_operator[]()
get_Count()
get_YIndex()
set_YIndex()
Add()

MeasurementSet

get_operator[]()
set_operator[]()
get_Count()
get_YIndex()
set_YIndex()
IsError()
SetError()

Point3D

get_X()
set_X()
get_Y()
set_Y()
get_Z()
set_Z()

MeasurementPoint3D

get_X()
set_X()
get_Y()
set_Y()
get_Z()
set_Z()

EventArgs

AnalyzerGrooveDataEventArgs

get_GrooveIndices()
set_GrooveIndices()

AnalyzerProgressEventArgs

get_ModifiedPoints()
get_PointSet()

AnalyzerTextEventArgs

get_Text()

IDisposable

IniReader

get_operator []()
set_operator []()
GetIntValue()
GetDoubleValue()
Dispose()

GrooveAccessor

GroovePoint

 

Figure B.7: Class diagram for DictabeltCorrector

91



IDesctiptible

get_DescName()
get_DescDescription()

Form

O3D_Meshed

Dispose()
get_NumberOfFaces()
Draw()
get_Mesh()
set_Mesh()

BoundingBox

O3D_Surface

Draw()
AlterPoint()

IBoundBoxed

get_BoundingBox()
set_BoundingBox()

UserControl

IGui

Init()
StartGui()

Frustum

Octree

AddObject()
GetVisibleObjects()

O3D_Plane

get_Width()
set_Width()
get_Height()
set_Height()
get_PosX()
set_PosX()
get_PosY()
set_PosY()
get_PosZ()
set_PosZ()
Restore()
Draw()

SkeletonObject
obj
idLoc
precision

get_BoundingBox()
set_BoundingBox()
CompareTo()
Compare()
operator >()
operator <()

O3D_Grooves

get_PosX()
set_PosX()
get_PosY()
set_PosY()
get_PosZ()
set_PosZ()
UpdateWorldMatrix()
Restore()
Draw()

IDisposable

GroovePoint

EventArgs

AnalyzerDataReadyEventArgs

get_Title()
set_Title()
get_Progress()
set_Progress()

AnalyzerGrooveDataEventArgs

get_GrooveIndices()
set_GrooveIndices()

AnalyzerProgressEventArgs

get_ModifiedPoints()
get_PointSet()

AnalyzerTextEventArgs

get_Text()

Object3D

Dispose()
Draw()
Restore()
get_NumberOfFaces()
get_Position()
set_Position()
get_AlphaBlendable()
set_AlphaBlendable()

GrooveAccessor

ViewPort3D

get_PosX()
set_PosX()
get_PosY()
set_PosY()
get_PosZ()
set_PosZ()
get_Radius()
set_Radius()
get_HAngle()
set_HAngle()
get_VAngle()
set_VAngle()
get_PosXLimitEnabled()
set_PosXLimitEnabled()
get_PosXLowerLimit()
set_PosXLowerLimit()
get_PosXUpperLimit()
set_PosXUpperLimit()
get_PosYLimitEnabled()
set_PosYLimitEnabled()
get_PosYLowerLimit()
set_PosYLowerLimit()
get_PosYUpperLimit()
set_PosYUpperLimit()
get_PosZLimitEnabled()
set_PosZLimitEnabled()
get_PosZLowerLimit()
set_PosZLowerLimit()
get_PosZUpperLimit()
set_PosZUpperLimit()
get_RadiusLimitEnabled()
set_RadiusLimitEnabled()
get_RadiusLowerLimit()
set_RadiusLowerLimit()
get_RadiusUpperLimit()
set_RadiusUpperLimit()
get_HAngleLimitEnabled()
set_HAngleLimitEnabled()
get_HAngleLowerLimit()
set_HAngleLowerLimit()
get_HAngleUpperLimit()
set_HAngleUpperLimit()
get_VAngleLimitEnabled()
set_VAngleLimitEnabled()
get_VAngleLowerLimit()
set_VAngleLowerLimit()
get_VAngleUpperLimit()
set_VAngleUpperLimit()
get_Scene3D()
set_Scene3D()
get_SwapChain()
set_SwapChain()
get_MovingMode()
set_MovingMode()
get_CameraControlEnabled()
set_CameraControlEnabled()
get_Frustum()
IsPointVisible()
IsBoundingBoxVisible()
BeginCameraMove()
EndCameraMove()
get_ViewMatrix()
GetRasterizedPoint()
get_ViewMatrix()
get_ProjectionMatrix()
UpdateFrustum()

IAnalyzer

Start()
Stop()
Pause()
Resume()
Init()
get_State()
Join()
get_SliceDataReadyEvent()
set_SliceDataReadyEvent()
get_TextEvent()
set_TextEvent()
get_ProgressEvent()
set_ProgressEvent()
get_GrooveDataEvent()
set_GrooveDataEvent()

Scene3D

get_NumberOfPolygons()
AddObject()
RemoveObject()
AddAlphaObject()
RemoveAlphaObject()
Init()
AddViewPort()
RemoveViewPort()
RenderAll()
get_Device()

Controller3D

SetMeasAccessor()
AddViewPort()
InitViewPort()
ComputeSceneSquares()
AdjustMeasurement()
StopSurfaceLoader()
Dispose()
get_SliceZoomedPlane()
get_SlicePlane()

Progress

get_Message()
set_Message()
get_Value()
set_Value()

ZedGraphControl

IMeasurementAccessor

Init()
GetHeight()
GetHeights()
SetHeight()
IsMeasurementError()
SetMeasurementError()
get_File()
set_File()
get_SizeX()
get_SizeY()
get_UnitSizeX()
get_UnitSizeY()
get_GrooveAccessor()
get_IsPreprocessed()

IniReader

get_operator []()
set_operator []()
GetIntValue()
GetDoubleValue()
Dispose()

HoldableButton

get_RepeatDelay()
set_RepeatDelay()
get_DelayBeforeRepeat()
set_DelayBeforeRepeat()
get_TickCount()

DictabeltAnalyzerView

Init()
StartGui()
get_DescName()
get_DescDescription()

Button

 

Figure B.8: Class diagram for GUI1

92



IDesctiptible

Form

O3D_Meshed

Dispose()
get_NumberOfFaces()
Draw()
get_Mesh()
set_Mesh()

BoundingBox

O3D_Surface

Draw()
AlterPoint()

IBoundBoxed

get_BoundingBox()
set_BoundingBox()

UserControl

IGui

Frustum
Octree

AddObject()
GetVisibleObjects()

O3D_Plane

get_Width()
set_Width()
get_Height()
set_Height()
get_PosX()
set_PosX()
get_PosY()
set_PosY()
get_PosZ()
set_PosZ()
Restore()
Draw()

SkeletonObject
obj
idLoc
precision

get_BoundingBox()
set_BoundingBox()
CompareTo()
Compare()
operator >()
operator <()

IMeasurementAccessor

Init()
GetHeight()
GetHeights()
SetHeight()
IsMeasurementError()
SetMeasurementError()
get_File()
set_File()
get_SizeX()
get_SizeY()
get_UnitSizeX()
get_UnitSizeY()
get_GrooveAccessor()
get_IsPreprocessed()

IAnalyzer

Start()
Stop()
Pause()
Resume()
Init()
get_State()
Join()
get_SliceDataReadyEvent()
set_SliceDataReadyEvent()
get_TextEvent()
set_TextEvent()
get_ProgressEvent()
set_ProgressEvent()
get_GrooveDataEvent()
set_GrooveDataEvent()

Progress

get_Message()
set_Message()
get_Value()
set_Value()

Object3D

Dispose()
Draw()
Restore()
get_NumberOfFaces()
get_Position()
set_Position()
get_AlphaBlendable()
set_AlphaBlendable()

ViewPort3D

get_PosX()
set_PosX()
get_PosY()
set_PosY()
get_PosZ()
set_PosZ()
get_Radius()
set_Radius()
get_HAngle()
set_HAngle()
get_VAngle()
set_VAngle()
get_PosXLimitEnabled()
set_PosXLimitEnabled()
get_PosXLowerLimit()
set_PosXLowerLimit()
get_PosXUpperLimit()
set_PosXUpperLimit()
get_PosYLimitEnabled()
set_PosYLimitEnabled()
get_PosYLowerLimit()
set_PosYLowerLimit()
get_PosYUpperLimit()
set_PosYUpperLimit()
get_PosZLimitEnabled()
set_PosZLimitEnabled()
get_PosZLowerLimit()
set_PosZLowerLimit()
get_PosZUpperLimit()
set_PosZUpperLimit()
get_RadiusLimitEnabled()
set_RadiusLimitEnabled()
get_RadiusLowerLimit()
set_RadiusLowerLimit()
get_RadiusUpperLimit()
set_RadiusUpperLimit()
get_HAngleLimitEnabled()
set_HAngleLimitEnabled()
get_HAngleLowerLimit()
set_HAngleLowerLimit()
get_HAngleUpperLimit()
set_HAngleUpperLimit()
get_VAngleLimitEnabled()
set_VAngleLimitEnabled()
get_VAngleLowerLimit()
set_VAngleLowerLimit()
get_VAngleUpperLimit()
set_VAngleUpperLimit()
get_Scene3D()
set_Scene3D()
get_SwapChain()
set_SwapChain()
get_MovingMode()
set_MovingMode()
get_CameraControlEnabled()
set_CameraControlEnabled()
get_Frustum()
IsPointVisible()
IsBoundingBoxVisible()
BeginCameraMove()
EndCameraMove()
get_ViewMatrix()
GetRasterizedPoint()
get_ViewMatrix()
get_ProjectionMatrix()
UpdateFrustum()

Controller3D

SetMeasAccessor()
AddViewPort()
InitViewPort()
ComputeSceneSquares()
AdjustMeasurement()
StopSurfaceLoader()
Dispose()
get_SliceZoomedPlane()
get_SlicePlane()

FullScreenView

Init()
StartGui()
get_DescName()
get_DescDescription()

IniReader

get_operator []()
set_operator []()
GetIntValue()
GetDoubleValue()
Dispose()

Scene3D

get_NumberOfPolygons()
AddObject()
RemoveObject()
AddAlphaObject()
RemoveAlphaObject()
Init()
AddViewPort()
RemoveViewPort()
RenderAll()
get_Device()

 Figure B.9: Class diagram for Full3D

93



Appendix C

Notes on the 3D engine

C.1 DirectX 9 3D Pipeline

The 3D pipeline is the workflow Direct3D performs to transform a 3D model to
a 2D image (see figure C.1). The first step is the transformation and lighting,
which is also called ”tessellation”. After the transformation, all vertices have
their final position in the world (not really because an optional vertex shader
might move them afterwards). This is achieved by multiplying them all first by
the world matrix, which positions the model in the space, rotates it and scales
it, and second by multipling all of the resulting vertices by the view matrix,
which rotates, translates and scales the whole world. Actually, to improve
the performances of the transformation, the view and the world matrix are
multiplied together and the vertices are multiplied by the resulting matrix.
The lighting is computed using the normal vector of each vertex, which was
transformed too. Then a vertex shader might be applied to create sophisticated
effects. Now that the final positions of the vertices are known, Direct3D can
rasterize them. That means that each vertex is multiplied by the projection
matrix which basically defines the field of view. This matrix makes the further
object look smaller and the nearest one bigger. After this operation, the X and Y
position of each vertex is exactly its position on the 2D screen and the Z position
provides information about its depth, which will be used later to know which
models are foreground and which one are background. To improve performances
the culling operation aims at removing all the primitives (simple figures discribed
by the indices and the vertices) that are offscreen or not visible. The pixel shader
takes then care of filling the primitives according their color, lighting and texture
and optionnally applying some fancy effects. Finally the primitives are rendered
to the backbuffer and the Z-buffer, which contains information about the depth
of each backbuffer’s pixels to avoid a nearer pixel to be overwritten by a further
one.

C.2 Frustum culling

The source code below is used to determine wether an axis aligned bounding
box is fully inside, fully outside the viewing frustum or intersects with it. The
return value is

94



• 0 : Fully outside

• 1 : Intersects

• 2 : Fully inside

1 public int ContainsBoundingBox (BoundingBox box )
2 {
3 bool i n t e r s e c t = fa l se ;
4 int r e s u l t = 0 ;
5
6 Vector3 minExtreme ;
7 Vector3 maxExtreme ;
8
9 for ( int i = 0 ; i < 6 ; i++)

10 {
11 Plane p = planes [ i ] ;
12 i f (p .A <= 0)
13 {
14 minExtreme .X = box .XYZLower .X;
15 maxExtreme .X = box .XYZUpper .X;
16 }
17 else
18 {
19 minExtreme .X = box .XYZUpper .X;
20 maxExtreme .X = box .XYZLower .X;
21 }
22
23 i f (p .B <= 0)
24 {
25 minExtreme .Y = box .XYZLower .Y;
26 maxExtreme .Y = box .XYZUpper .Y;
27 }
28 else
29 {
30 minExtreme .Y = box .XYZUpper .Y;
31 maxExtreme .Y = box .XYZLower .Y;
32 }
33
34 i f (p .C <= 0)
35 {
36 minExtreme . Z = box .XYZLower . Z ;
37 maxExtreme . Z = box .XYZUpper . Z ;
38 }
39 else
40 {
41 minExtreme . Z = box .XYZUpper . Z ;
42 maxExtreme . Z = box .XYZLower . Z ;
43 }
44 i f ( Plane . DotNormal (p , minExtreme ) + p .D < 0)
45 {
46 r e s u l t = 0 ;
47 return r e s u l t ;
48 }
49
50 i f ( Plane . DotNormal (p , maxExtreme ) + p .D <= 0)
51 i n t e r s e c t = true ;
52 }
53
54 i f ( i n t e r s e c t )
55 r e s u l t = 1 ;

95



56 else
57 r e s u l t = 2 ;
58
59 return r e s u l t ;
60 }

96



Vertices

Indices

Transformation 
and lighting

Vertex 
shader CullingRasterization Pixel 

shader

Texture 
surface

Texture 
sample

Rendering

Figure C.1: DirectX 3D pipeline

97



Appendix D

Study of Gramophone
Records

A test was conducted acquiring data using the 3D scanner to scan gramophone
records. The results were not as good as expected. The light intensity reflected
from the surface of the record is not enough when the confocal probe scans
groove walls. This is with shellac records. On gramophone records the angle
of the groove walls is about 45◦. Although this is above the limit of the confo-
cal metrology device (the indicated maximum measurable angle is 27◦) earlier
measurements of records done in the lab showed satisfactory results. After dif-
ferent tests the conclusion is that the light source intensity must be lower than
it was before. The light source has caused other problems in the past. The
manufacturer suggests that the probe is returned for maintenance.

In another test aluminum records were scanned. Since aluminum reflects
light more than regular shellac discs, the light intensity of the reflected light
might be strong enough. They indeed seemed to produce acceptable data. With
”regular” records the CHR had to run at a low acquisition frequency, e.g. 33Hz,
to get the maximum light intensity. With aluminum records it was pretty pretty
much the opposite. Because of the reflecting surface of the aluminum record
too much light is reflected when running at low acquisition frequencies. After
several tests the conclusion is that 1000Hz is a good value for aluminum discs.

The data acquisition process strategy used to scan the disc is the same as
explained in [2]: the record is first scanned along the axis (radial) and then
the aximuth (rotation) is incremented. This means that the data needs to be
reorganized at the end of the scan to get sequential in time. For conventional
purposes a scan along the axis is called a ”slice”. In this experiment a slice is
10mm wide, which correspond approximately to 25 grooves. A step along the
axis is 5µm long. That means that 2000 points are acquired for each slice. The
scan rotates over the whole disc, i.e. 360◦, with an increment of 0.01285◦. That
corresponds to a sampling frequency of about 30KHz. The confocal probe was
configured to acquire data at 1KHz. At lower frequencies a lot of noise was
measured which is probably due to the aluminum surface that scatters the light.

The shape and geometry of the groove on aluminum discs are slightly dif-
ferent than the ones on other records. Usually the groove-to-groove distance
is about 400µm whereas the groove depth is 60µm and the groove width (on

98



the top) is 150µm. On the data taken from the aluminum disc, the groove is
between 9µm and 15µm deep, depending on how you see the groove, 125µm
wide and the groove-to-groove distance is about 250µm. Figure D.1 shows a
portion of a disc slice. It represents the points measured by the confocal probe.
Note that the points are equidistant from each other. With some experience,
one can ”guess” the groove shape. Aluminum records are embossed using a
cutting tool. The matter that was prior in the groove is ”pushed” out and some
of it stays on top of the groove and forms a hill. These hills are very well seen
in the figure. Note that the groove on aluminum discs is a little narrower and
especially less deep. Hence the slope of the groove walls is smaller. This might
also explain why data could be acquire from the aluminum records.

Figure D.1: Acquired data (points) from a aluminum record that represents five
grooves within a slice. Note that the points are equidistant from each other.

99



Appendix E

Noise Measurement

E.1 Static Confocal probe

In order to measure the noise of the confocal probe the linear stage and the
rotational stage were stationary. Two different positions on the dictation belt
were considered for that measurement: a region with a certain slope, e.g. in
the middle of a groove wall, and a flat region, e.g. between two grooves. Since
the intensity of the measured light that is coming back into the CHR is less
on regions with slope, the quality of the measurement might be affected. To
position the linear motor at the right place, a LabView program was designed
that plots measurement points in real time and lets the user move the linear
stage to the right position. Using this tool it is fairly easy to position the probe
to measure a groove wall or the top of a groove. In this measurement the points
on the steep region were acquired from a groove wall which has a typical slope of
approximately 27%. Once the linear motor was positioned, measurements of the
same location were taken using different probe rates. The acquired measurement
points are normally distributed around some mean value. Table E.1 shows the
standard deviation in micrometer of the measurement points for the different
locations and probe rates. For each measurement 10000 points were acquired.

Table E.1: Noise measurement for confocal probe.

Location Probe rate Standard deviation
[kHz] [µm]

Flat region 0.4 0.0204
1.0 0.0311
2.0 0.0631
4.0 0.1480

Steep region 0.4 0.0348
1.0 0.0827
2.0 0.1261
4.0 0.1942

The values from Table E.1 suggest that the precision of the measured points

100



with the confocal probe varies with the probe rate. Lower probe rates such
as 400 measurements a second give better results than higher rates. This is
probably due to the fact that the light intensity that is going back to the CHR
lowers as the probe rate gets higher. For the same reason a smaller standard
deviation is measured on a flat surface compared to a surface with a certain
slope. If the measured surface is not flat, the light intensity that goes back to
the CHR is lower because the light is partially reflected away from the probe.

E.2 Moving Confocal probe

The previous section shows the measurement procedure that was used to identify
the noise of the confocal probe when the probe is not moving. When the probe
is moving two additional noise sources must be considered: The linear stage and
the trigger that tells the confocal probe when to measure.

The linear stage is configured to move at constant velocity while the confocal
probe is taking data at a constant rate. Measurement points are considered to
be equally distant from each other, which is only accurate if the linear stage
speed is constant. Since the linear stage is a servo motor its position, and
speed, are constantly corrected using a PID controller. This helps to achieve a
constant velocity but small fluctuations in the speed might still introduce errors
at every measurement point since in the analysis the points are considered to
be equally distant.

The trigger is sent from the motion controller to the confocal probe to start
the data gathering whenever the linear stage is crossing a certain position. If
the trigger is not precise, the probe will not always start the measurement at
the same place. This would introduce a certain offset between consecutive data
slices.

A measurement was set up to measure the combined error and noise for
the three error sources: The linear stage, the trigger and the confocal probe.
For that measurement, the same data slice was measured 500 times. That
means that the rotational axes did not move at all. Each slice contains 2000
measurement points, which represents 10mm width on the dictation belt since
each point is spaced by 5µm. Several measurement points from flat regions and
points from steep regions where picked out of the 2000 measurement points. For
each of these points the standard deviation was computed over the 500 slices.
Tables E.2 and E.2 shows the standard deviations obtained. The position rep-
resents the index in the 2000 point array and the values represent the standard
deviation of the measurement in micrometer.

Measurements taken at 400Hz have a bigger standard deviation than mea-
surements taken at 1000Hz. This is not the case if the confocal probe is sta-
tionary. Since the probe is averaging the surface height over a distance of 5µm
when moving, the light intensity is probably saturating at 400Hz which would
explain the loss in precision. The best results are achieved at 1000Hz.

101



Table E.2: Noise measurement in µm on steep regions for confocal probe in
motion.

Probe rate [Hz]
Position 400 1000 2000 4000

88 0.26893 0.07173 0.23286 0.33383
110 0.48712 0.07145 0.16945 0.49850
212 0.43732 0.07572 0.18143 0.31779
315 0.65103 0.08875 0.24589 0.97616
569 0.40861 0.08346 0.39410 0.51620
672 0.55942 0.09619 0.17879 0.62353
646 0.52661 0.07468 0.20491 0.55398
638 0.25921 0.08674 0.11869 0.17156
620 0.53756 0.07940 0.16410 0.28876
596 0.43672 0.09685 0.40032 0.34072
570 0.88184 0.10250 0.25143 0.54005
442 0.35652 0.13397 0.30987 0.63991

Table E.3: Noise measurement in µm on flat regions for confocal probe in
motion.

Probe rate [Hz]
Position 400 1000 2000 4000

119 0.13210 0.06564 0.10292 0.16859
172 0.17258 0.06409 0.11599 0.20330
273 0.19688 0.09565 0.11749 0.17562
325 0.15122 0.07993 0.14851 0.15216
349 0.13296 0.07962 0.11793 0.14234

102



Appendix F

Data Acquisition File
Format

The data acquired with the LabView program are stored in binary files using
the SGL format, which is the standard way to write binary data with LabView.
For historical reasons the number in SGL files are stored using the Big Endian
format. In Big Endian format, the most significant byte (MSB) of a multi-byte
number is written first, then the second MSB, and so on down to the least
significant byte (LSB). The header as well as all the data is stored as SGL
precision numbers (4 Bytes).

The header of a data file is structured like follows:

Offset Description
0x00 Scanning increment (µm)
0x04 Distance to scan (mm)
0x08 Scan starting position (mm)
0x0c Angular increment (◦)
0x10 Number of angular steps

The scanning increment corresponds to the distance between two measure-
ment points in a slice along the dictation belt axis. The distance to scan is
the distance in millimeters along the dictation belt axis the confocal probe is
taking measurements. The number of points taken along the axis is given by
distancetoscan∗1000
scanningincrement . The position on the belt where the scan starts is the scan
starting position given in millimeters. This value is only relevant for a certain
linear stage setup since this value represents a position relative to the home
position of the linear stage motor. The angular increment gives the step in
degrees of the rotational stage taken between each slice. The number of angular
steps represents the number of slices measured. Usually the number of angular
steps times the angular increment is equal to 360 ◦.

The rest of the file contains one measured slice after another. The measure-
ment point that was measured first in the slice is stored first in the file. All the
measurement points are therefore stored in the order they are measured.

103



Appendix G

File Listing

This chapter lists all the LabView VI’s, the important data files and extracted
wav files.

G.1 LabView Files

G.1.1 Data Analyzer

Filename: Analzyer4.vi

This is the first implementation of the data analysis software. It basically
goes through the data slice per slice, finds interesting regions that might contain
a groove bottom, fits a sixth polynomial function to each interesting region and
takes the minimum of that sixth polynomial function as the groove bottom. The
detected groove bottoms are then linked together to form a consecutive signal.
The resulting signal is filtered, resampled, scaled and converted to a wav file.
For more details about the data analysis process please refer to Chapter 4.

G.1.2 Output Sine Waves

Filename: OutputSineWaves.vi

This VI is used to generate sine waves and output the signal to the sound
card that converts it to an analogue signal (PXI 4461). The output is a series
of sine waves at different frequencies. The user can indicate the lowest and
highest frequency. The program will generate sine waves starting at the lowest
frequency and doubling the frequency at each step until the higher frequency
is reached. Silence of 0.5 seconds is inserted between each frequency. The
amplitude, sampling frequency and the duration of the signal can be specified
as well.

This VI was used to generate test patterns that were recorded on dictations
belts and scanned with the optical scanner afterwards.

G.1.3 Output Swept Sines

Filename: OutputSweptSine.vi

104



This VI generates a swept sine signal used by the National Instruments
Sound and Vibration Toolkit, which can be used to measure for example the
harmonic distortion caused by the dictation belt recording machine. It basically
generates a sine wave that is continuously increasing its frequency. The lowest
and highest frequency, the sampling frequency and the output voltage can be
specified in the VI.

This VI was used to generate test patterns that were recorded on dictations
belts and scanned with the optical scanner afterwards.

G.1.4 Signal Acquisition With Sound Card

Filename: CompareSignalsDAQ.vi

This VI’s reads the analog input of the acquisition card (PXI 4461) and
writes the data into a SGL binary file. No filtering is applied. A small header
is written containing two floating SGL files. The first is the sampling frequency
and the second is the number of samples acquired.

This VI was used to measure the speaker output, the signal applied at the
recording needle, and the signal measured at the playback needle. Wav files can
be generate from data acquired with that VI using the SignalFiltering2 VI. The
data file has to be previously converted using the Cmp2Xpos VI.

G.1.5 Compare Signals

Filename: CompareSignals.vi

With this VI the user can compare different waveforms that were either ex-
tracted with the optical method or measured using the CompareSignalsDAQ VI.
Up to three waveforms can be loaded and compared. The offset and amplitude
of each waveform can be modified in order to superpose them. The spectrum of
certain regions of the waveform can also be compared, by indicating the regions
of interest. If the user wants to compare a file extracted from the analyzer he
needs to add a special header to the file that contains two values: the first value
is the sampling frequency and the second is the number of samples.

G.1.6 Sound Filtering and Wav Generation

Filename: SoundFiltering2.vi

This VI was used before the C# code was able to output a wav audio file.
The C# analyzer would output a file called XPos file that is an SGL binary
file that contains the position of the groove bottom at any given time. This VI
removes the slope of the input signal, it passes the waveform though a bandpass
filter, resamples the signal, scales it and saves the result as a wav file at 11025Hz.

G.1.7 Data Acquisition

Filename: ....vi

This is the main data acquisition VI. The user has to first configure the
measurement. Once the measurement is configured it can be run. This VI will
output a data file that contains the measured distances by the confocal probe.

105



The format of the file is described in details in Chapter F. The structure of this
VI is presented in Chapter 3.

G.1.8 Additional VI’s

Other VI’s have been used to measure the noise level of different measurements,
measure the total harmonic distortion of a signal or simply perform some basic
operations used in VI’s described earlier. These VI’s are not described more in
detail here.

G.2 Optical Measurement Files

Several data files were acquired with the optical method during the project.
This sections lists all these files and indicates their names, the configuration pa-
rameters and their purpose. The measurements are listed in their chronological
order. Note that for all measurements the distance between two measurements
along the axis is 5µm. The sampling frequency indicated is the sampling fre-
quency of the corresponding sound on the belt:

fs =
num angular increments · rpm

60s
(G.1)

For example if 18000 samples were taken, the sampling frequency would
be 18000·42

60 = 12600Hz. The CHR sampling rate is the number of samples
what were taken per seconds with the confocal probe. The recording amplitude
mentioned in the configuration parameters corresponds to the amplitude of the
signal outputted by the sound card (PXI 4461) that was then recorded using
the dictation belt recorder. The typical sound patterns recorded on dictation
belts are eight two second long sine waves with frequencies between 50Hz and
6.4kHz. The frequency is doubled at each frequency change (50Hz, 100Hz,
200Hz, ..., 6.4kHz). Between each frequency a 0.5s of silence was recorded. On
some belts there is a swept sine recorded as well.

G.2.1 Men Talking 12.6KHz

Filename: DB-12K-7mm-5um-20050829.dat

This file is the first measurement. It is an old belt on which an insurance guy
is talking. This measurement was made to make sure the measurement process
and the data acquisition is working properly.

Configuration parameters

Parameter Name Value
Sampling frequency 12.6KHz
CHR sampling rate 1000Hz
Distance to scan 7mm
Angular increment 0.02◦

Number of angular increments 18000
Date 29 August 2005

106



G.2.2 High Amplitude Sine Waves

Filename: DB-12K-11mm-5um-20050902.dat

This file contains the recording of sine waves at different frequencies. The
amplitude used to record these signal was 1V , which is much higher than the
amplitude generated by a regular microphone. This was not known at the time
this belt was recorded. The dictation belt recorder has an automatic gain control
that reduced automatically the amplitude of the signal.

Configuration parameters

Parameter Name Value
Sampling frequency 12.6KHz
CHR sampling rate 1000Hz
Distance to scan 11mm
Angular increment 0.02◦

Number of angular increments 18000
Recording amplitude 1V
Date 2 September 2005

G.2.3 Lower Sine Waves at 25.2KHz

Filename: DB-25K-6mm-5um-20050909.dat

This file was recorded at a lower amplitude using 50mV , which is approxi-
mately the output voltage generated by the dictation belt recorder microphone
when someone is dictating something. The test pattern is composed of sine
waves at different frequencies with a swept sine.

Configuration parameters

Parameter Name Value
Sampling frequency 25.2KHz
CHR sampling rate 1000Hz
Distance to scan 6mm
Angular increment 0.01◦

Number of angular increments 36000
Recording amplitude 50mV
Date 9 September 2005

G.2.4 High Sampling Frequency

Filename: DB-50K-5mm-5um-20050916.dat

The same dictation belt that was scanned at 25.4kHz was scanned again at
a higher sampling frequency. In order for the scan to finish in one weekend the
CHR sampling rate had to be raised to 2kHz instead of 1kHz. The number
of measurement errors is higher at a higher sampling rate. There is a tradeoff
between the sampling frequency and the quality of the measurement since the
time for a scan is limited.

107



Configuration parameters

Parameter Name Value
Sampling frequency 50.4KHz
CHR sampling rate 2000Hz
Distance to scan 5mm
Angular increment 0.005◦

Number of angular increments 72000
Recording amplitude 50mV
Date 16 September 2005

G.2.5 High Sampling Frequency Lower Gain

Filename: DB-50K-5mm-5um-20050930.dat

Sine waves at different frequencies were recorded with a lower gain. The
gain of the external microphone can be adjusted with a knob on the dictation
belt recorder. This belt did not show good results. The noise level was too high
compared to the level of the sound signal.

Configuration parameters

Parameter Name Value
Sampling frequency 50.4KHz
CHR sampling rate 2000Hz
Distance to scan 5mm
Angular increment 0.005◦

Number of angular increments 72000
Recording amplitude 50mV
Date 16 September 2005

G.2.6 High Sampling Frequency Lower Gain

Filename: DB-50K-5mm-5um-20050930.dat

Sine waves at different frequencies were recorded with a lower gain. The
gain of the external microphone can be adjusted with a knob on the dictation
belt recorder. This belt did not show good results. The noise level was too high
compared to the level of the sound signal.

108



Configuration parameters

Parameter Name Value
Sampling frequency 50.4KHz
CHR sampling rate 2000Hz
Distance to scan 5mm
Angular increment 0.005◦

Number of angular increments 72000
Recording amplitude 50mV
Date 30 September 2005

G.2.7 High Sampling Frequency Lower Gain

Filename: DB-50K-4mm-5um-20051009.dat

The waveform recorded on that belt has been played once before it was
scanned with the optical method. While it was played back with the dictation
belt player the data acquisition card (PXI 4661) recorded the voltage at the
playback needle. The filename of the output waveform from the reading needle
is: needle-50mV-Scan-out.dat.

Configuration parameters

Parameter Name Value
Sampling frequency 50.4KHz
CHR sampling rate 2000Hz
Distance to scan 4mm
Angular increment 0.005◦

Number of angular increments 72000
Recording amplitude 50mV
Date 9 October 2005

G.2.8 Men Talking 50.4kHz First Try

Filename: DB-50K-5mm-5um-20051014.dat

This was a first try to measure the old dictation belt. The computer crashed
in the middle of the measurement. This file still contains some data but now a
whole measurement.

109



Configuration parameters

Parameter Name Value
Sampling frequency 50.4KHz
CHR sampling rate 2000Hz
Distance to scan 4mm
Angular increment 0.005◦

Number of angular increments 72000
Recording amplitude 50mV
Date 14 October 2005

G.2.9 Men Talking 50.4kHz Second Try

Filename: DB-50K-5mm-5um-20051018.dat

Measurement of the man talking.

Configuration parameters

Parameter Name Value
Sampling frequency 50.4KHz
CHR sampling rate 2000Hz
Distance to scan 5mm
Angular increment 0.005◦

Number of angular increments 72000
Recording amplitude 50mV
Date 18 October 2005

G.3 Needle and Speaker Measurement

The dictation belt machine was modified in order to be able to measure the
voltage at the recording needle, playback needle and the speaker output. These
files were acquired with the sound card (PXI 4461) using the same sampling
frequency used by the optical method (50.4kHz). All the data files store the
measured values in SGL binary format (see Chapter F for more information on
SGL binary files). The first two values in the file are the sampling frequency
and the number of samples measured.

All these files contain the same, usual test patterns: ten sines waves at
different frequencies from 50Hz to 6.4kHz recorded one after another. The
frequency is doubled after each sine wave. Each sine wave was recorded for two
seconds with half a second between each frequency change.

G.3.1 Recording Needle

Filename: needle-50mV-Scan-in.dat

This file was recorded by measuring the voltage around the recording needle
while recording test patterns using the data acquisition card (PXI 4461).

110



G.3.2 Playback Needle

Filename: needle-50mV-Scan-out.dat

This file was recorded by measuring the voltage around the playback needle
while playing a belt that contains test patterns.

G.3.3 Speaker output

Filename: speaker-50mV-Scan-out.dat

This file was recorded by measuring the speaker output of the dictation belt
player while playing test patterns using the data acquisition card (PXI 4461).

111



Appendix H

Dictation Belt Machine
Schematics

112



113


	1 Introduction
	1.1 An optical reading system
	1.1.1 The 2D scanner
	1.1.2 The 3D scanner

	1.2 Goal
	1.3 Achieved work
	1.4 Report organization

	2 Task List
	2.1 Getting started
	2.2 Record sample sounds
	2.3 Data acquisition
	2.4 Data visualization
	2.4.1 GUI and 3D environment
	2.4.2 2D & 3D display

	2.5 Data Analysis
	2.5.1 Data quality check
	2.5.2 Algorithm for groove tracking
	2.5.3 Bad regions correction
	2.5.4 Geometric correction
	2.5.5 Transfer function and filters
	2.5.6 Resampling

	2.6 Schedule

	3 Data Acquisition
	3.1 Methodology
	3.1.1 Color-Coded Confocal Probe
	3.1.2 Motion stages
	3.1.3 Data Collection
	3.1.4 Complete Picture

	3.2 Measurement Processes
	3.2.1 Introduction
	3.2.2 Acquisition Software

	3.3 Discussion

	4 Data Analysis Process
	4.1 Data Quality Check
	4.1.1 Confocal probe
	4.1.2 Trigger
	4.1.3 Linear motion stage

	4.2 Data Preprocessing
	4.2.1 Measurement errors
	4.2.2 Warpage

	4.3 Groove Detection
	4.3.1 Fit Parabola
	4.3.2 Fit Circle Shape
	4.3.3 Repeated Fit

	4.4 Data Post-Processing
	4.4.1 Silence Generation
	4.4.2 Z Shift Detection

	4.5 Filtering and Resampling
	4.5.1 Resampling


	5 Study of a Dictation Belt Recorder
	5.1 Sound Samples Recording
	5.2 Apparatus
	5.2.1 Playback Pickup
	5.2.2 Recording Pickup
	5.2.3 Speaker Output


	6 Software
	6.1 Analysis
	6.1.1 Needs
	6.1.2 Programming Language
	6.1.3 Graphic API
	6.1.4 Math and DSP Library
	6.1.5 Input
	6.1.6 Output

	6.2 Design
	6.2.1 Architecture
	6.2.2 Concurrent Programming in C#
	6.2.3 3D View of the Surface
	6.2.4 Information Exchange

	6.3 Implementation
	6.3.1 Class Diagram
	6.3.2 Interfaces Description
	6.3.3 Classes Description

	6.4 Issues and Known Bugs
	6.4.1 Device Lost Exception
	6.4.2 Out of Memory Exception
	6.4.3 Incomplete Surface

	6.5 Future
	6.5.1 Gramophonic Records
	6.5.2 Phonographic Cylinders
	6.5.3 Phonographic Records
	6.5.4 Stereophonic Records


	7 Tests and results
	7.1 Signals Comparision
	7.2 Measurement Quality
	7.3 Sound Quality
	7.4 Processing Time

	8 Conclusion
	9 Acknowledgements
	A Groovster User guide
	A.1 Installation
	A.1.1 Requirements
	A.1.2 Microsoft .NET Framework
	A.1.3 Microsoft DirectX 9
	A.1.4 National Instrument Measurement Studio
	A.1.5 Groovster

	A.2 Using Groovster
	A.2.1 Analyzers
	A.2.2 GUIs
	A.2.3 Measurement Accessors
	A.2.4 Settings

	A.3 Adding New Features
	A.3.1 Adding an Analyzer
	A.3.2 Adding a Graphic User Interface
	A.3.3 void StartGui()
	A.3.4 Adding a Measurement Accessor


	B Class Diagrams
	B.1 Binaries
	B.2 Dependencies
	B.3 Part Class Diagrams

	C Notes on the 3D engine
	C.1 DirectX 9 3D Pipeline
	C.2 Frustum culling

	D Study of Gramophone Records
	E Noise Measurement
	E.1 Static Confocal probe
	E.2 Moving Confocal probe

	F Data Acquisition File Format
	G File Listing
	G.1 LabView Files
	G.1.1 Data Analyzer
	G.1.2 Output Sine Waves
	G.1.3 Output Swept Sines
	G.1.4 Signal Acquisition With Sound Card
	G.1.5 Compare Signals
	G.1.6 Sound Filtering and Wav Generation
	G.1.7 Data Acquisition
	G.1.8 Additional VI's

	G.2 Optical Measurement Files
	G.2.1 Men Talking 12.6KHz
	G.2.2 High Amplitude Sine Waves
	G.2.3 Lower Sine Waves at 25.2KHz
	G.2.4 High Sampling Frequency
	G.2.5 High Sampling Frequency Lower Gain
	G.2.6 High Sampling Frequency Lower Gain
	G.2.7 High Sampling Frequency Lower Gain
	G.2.8 Men Talking 50.4kHz First Try
	G.2.9 Men Talking 50.4kHz Second Try

	G.3 Needle and Speaker Measurement
	G.3.1 Recording Needle
	G.3.2 Playback Needle
	G.3.3 Speaker output


	H Dictation Belt Machine Schematics

