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Abstract

At the Lawrence Berkeley National Laboratory old records are re-
constructed using state of the art imaging technology. In an effort to
improve sound quality, a study which includes multidimensional mini-
mization on the edge detection parameters was carried out. Despite the
use of different minimization techniques as well as various approaches
on edge detection this method fails to deliver significantly better re-
sults.

Le Lawrence Berkeley National Laboratory dispose d’une technologie
de pointe basée sur le traitement d’image pour la reconstruction de
vieux enregistrements audio. Pour améliorer la qualité du son généré,
un projet utilisant des algorithmes de minimisation pour la détection
des contours a été réalisé. Malgré l’application de plusieurs approches
pour les deux sujets, la méthode générale ne parvient pas à apporter
de grandes améliorations de la qualité du son.

Am Lawrence Berkeley National Laboratory werden alte Schallplat-
ten mit neuster Technologie wiederhergestellt. Um die Qualität zu
verbessern wurde ein Projekt welches die multidimensionale Minimisierung
der Kantendetektion beinhaltet durchgeführt. Trotz der Nutzung von
verschiedenen Techniken für beide Teile ist die Methode nicht geeignet
die Qualität signifikant zu verbessern.
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1 INTRODUCTION

1 Introduction

At the Lawrence Berkeley National Laboratory, the reconstruction of old
records is undertaken with great effort. Carl Haber and his team extract
sound with optical methods from old records. Some of them could not
be read otherwise without destroying the disk in the process. Students
from the College of Engineering and Architecture, Part of the University of
Applied Sciences Western Switzerland have been supporting Mr. Haber in
this undertaking for the last six years.

The acquisition is done with two different systems called IRENE and
3D probe. Both of them retrieve the information with optical methods.
IRENE takes pictures of the surface, which results in 2D data with different
intensities. The 3D probe uses a laser to generate a 3D view of disks.
The recorded information is then processed and analyzed by two programs,
PRISM for 3D and RENE for 2D information. The structure of the entire
sound extraction project can be summarized as in the following image [Fig:
1 ] .

Sound 
Reconstruction 

IRENE 3D Probe 

RENE PRISM 

Task 

Hardware 

Software 

Figure 1: Overview of the sound extraction project

RENE and PRISM are capable of recalculating the sound from the ac-
quired data. This bachelor thesis will focus primarily on the left part in the
image [Fig: 1 ] , the processing of 2D data.
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1 INTRODUCTION

1.1 Context

The sound extraction is done in various steps. The first of them is an
edge detection algorithm which will recognize horizontal changes in intensity.
This helps identify the grooves in the image. Once the grooves are known to
the program, it is able to translate the movement of the grooves into sound.
The sound will then be written to the disk in the form of a wave file. The
whole process can be illustrated as in the following image [Fig: 2 ] .

Image 
Processing 

Sound 
Extraction 

Figure 2: Basic functions of RENE

The image processing part contains the edge detection and smoothing
algorithms. The sound extraction part portrays the conversion of optical to
acoustical data. This view of the process is important because it displays
the state of the project before this thesis. In order to perform an automated
parameter adaption, several steps have to be added.

One might ask why the adaption of parameters is necessary more than
once. One reason is that disks made of different material exhibit distinct
groove movement for similar sound. This leads to noise in the final result.
The case is best illustrated by the image [Fig: 3 ] of two grooves.

Figure 3: Left: lacquer. Right: shellac
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1 INTRODUCTION

The image [Fig: 3 ] above shows how the material influences the border
of the grooves. The upper images are a close-up view of the bottom of the
groove; the lower images display how the entire groove looks. In the case of
the shellac, the borders are frayed. This will lead to noise component added
at the 1 kHz frequency.

Another important fact is that all of the disks which were encountered
during this thesis start with a short period of silence. It usually lasts between
one and three seconds. If one listens to the audio file, it is not silent at the
beginning but contains noise. This knowledge will be used to determine
how the parameter adaption performs. Put simply, the goal is to change
the parameters to reduce the noise in this first part without impairing the
sound quality.

This leads to the insertion of two additional steps into the sound ex-
traction process. Firstly the detection of the beginning of the sound, herein
called the silence sound transition and secondly the parameter adaption pro-
cess. Once they have been optimized, the whole extraction process starts
over with the new settings. The improved software therefore has six steps
as depicted in the next image [Fig: 4 ] .

Image 
Processing 

Sound 
Extraction 

Transition 
Detection 

Parameter 
Optimization 

Image 
Processing 

Sound 
Extraction 

Figure 4: Basic functions of RENE afterwards

These two steps contain numerous subtasks and the activities to com-
plete them will be outlined in the next two sub chapters.

1.2 Targets

Early in the project, the student and the supervisors have to agree on a
functional specification which contains goals for the project upon which
the result will be measured. The following 13 targets contain the general
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1 INTRODUCTION

workflow. These goals apply for 2D data, if time allows the study will be
expanded to 3D data as well.

1. Survey and study of prior work

2. Understand the IRENE code package used for 2D analysis

3. Selection of test disc sample, around 5-6 discs will be chosen as the
initial test group for this study

4. Development of code to find and isolate quiet portions of the audio

5. Development of code to measure noise and spectral properties on these
portions

6. Plots and summaries to monitor the above mentioned process

7. Study of edge detection algorithms

8. Selection of analysis parameters to vary in the optimization

9. Study of optimization processes and multi-dimensional minimization
search algorithms

10. Development of code to perform and display the results of the opti-
mization process

11. Study and comparison on the disc test sample

12. Final data analysis and conclusions

13. Documentation and Finalization

1.3 Activities

This section contains details of the targets which were specified in the pre-
vious subsection. A few short sentences will describe how each goal will be
attained and if possible which technique will be used.

Survey and study of prior work
Read any previous Bachelor thesis which is related with the current project.
Understand the concept of the image acquisition and the different charac-
teristics of the image processing.

Understand the IRENE code package used for 2D analysis
The program which analyses the data retrieved by IRENE is called RENE
and contains thousands of lines of code. The principal functions and the
parts which are crucial for the modification have to be read and understood.

11



1 INTRODUCTION

Selection of test disc sample, around 5-6 discs will be chosen as
the initial test group for this study
Select records which contain different types of records but the same noise
and sound structure. This means the records must start with a silent part
and continue with sound. A lead in groove must occur in the image. Most
records have this structure but not all the recorded files start from the be-
ginning.

Development of code to find and isolate quiet portions of the au-
dio
Introduce a code fragment in RENE which is capable of deciding when the
quiet part ends and the music or voice starts. It is important that this task
is achieved with a certain precision to do the minimization on the correct
part of the sound file.

Development of code to measure noise and spectral properties
on these portions
This task is included in the previous task but the methods which were used
should be accessible by any other part of the program. The standard proce-
dure to measure spectral properties is a Fourier Transformation which allows
measuring the intensity for a certain interval of frequencies. Moreover the
noise reduction which is supposed to be achieved by the parameter adaption
has to be quantified; this requires grading the audio output.

Plots and summaries to monitor the above mentioned process
To present the results acquired in the noise detection phase they have to be
properly visualized. A proper way to visualize the results is graphs.

Study of edge detection algorithms
The analysis of images requires a deeper understanding of the different edge
detection algorithms and their parameters. This includes the currently im-
plemented algorithms.

Selection of analysis parameters to vary in the optimization
In order to avoid wasting calculation time, the range of the parameters has
to be shrunk to a handful of values; these will be the boundaries of the
minimization process.

Study of optimization processes and multi-dimensional minimiza-
tion search algorithms
Finding minima in n-dimensional space requires multi-dimensional mini-
mization algorithms. Fortunately they have been developed before and effi-
cient implementations exist. These will be reviewed in this section.

12



1 INTRODUCTION

Development of code to perform and display the results of the
optimization process
The extensive analysis has then to be integrated in RENE; the results will
be visualized to inform the user of the progress and provide a feedback of
the improvements.

Study and comparison on the disc test sample
The previously selected samples will be tested and the results have to be
interpreted. If necessary the code has to be adapted in the next step to
ensure proper results under various circumstances

Final data analysis and conclusions
A final conclusion will be drawn and the results will be integrated into
RENE.

Documentation and Finalization
The whole report has to be written, adapted to the most recent events and
insights. Moreover it has to be read by an external person and adapted to
the remarks. The source code has to be documented and structured prop-
erly to be readable for the next developer.

1.4 Definitions

In order to understand all the activities described in this report, a certain
vocabulary and knowledge about the acquisition process has to be known by
the reader. This will be established in this section. The following explana-
tions are of course a simplified version of reality and do not take into account
the difficulties which might arise during these processes, such as damaged,
deformed or unclean disks. If we take a record and make cut a tiny piece
out of it, from the center to the border. It would have the following shape
[Fig: 5 ] :
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1 INTRODUCTION

Cross section of a record 

Groove 

magnified 

Groove bottom 

Bottom width 

Figure 5: Cross section of a record

The immersions will be called groove [Fig: 5 ] . One record has only one
groove which was continuously embossed. If we would watch this groove
from above it would have the shape of a spiral. In the digitalization process,
light is sent uniformly distributed to the disk from above. But the reflection
differs inside a groove, while the bottom is as bright as the untouched parts;
the descents appear darker due to the skewed reflection. The process is
visualized in the next image [Fig: 6 ] :
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Light source 

Detector 

Result 

Record 

Record 

Intensity 

Figure 6: Scanning process

The result is a line which contains two small black or darker parts which
represent the grooves. This result can be represented as a function of width
and intensity [Fig: 7 ] . The digitalization consists of attributing values to
the intensity and stores them as grayscale pixels.
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Result Intensity 

Intensity 

Width 

high 

low 

Figure 7: The result as a function

This process is repeated over and over in small intervals until a picture
of the whole record exists. In reality the difference between the bottom and
the slope has often less contrast than the image above and the transition
happens gradually. A real word example of one groove is given below [Fig:
8 ] :

Figure 8: Extract of DCS record at the original size of the image

The extract [Fig: 8 ] is from a real scan where the record is in good
shape. The contrast is high and the groove bottom is visible. Although it
is not clear now how the groove bottom width will be measured, different
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threshold values will change the result considerably. The parameters which
lead to the detection of these properties are described in the analysis section
of this report.

1.5 Physical Characteristics of Records

When analyzing these records, one has to be aware of the physical properties
of them. If we were to visualize only the groove, it would have the shape
of a spiral. This effect has to be calculated and subtracted from the data.
This is also true for the characteristics of the white noise. In the data it
is uniformly distributed in the spectrum. But because for the wav file the
derivative has to be taken, the noise will rise constantly from the left to the
right in the spectrogram, from the lower to the higher frequencies with a
gain of 6 dB per Octave.

1.6 Software

This chapter contains a brief overview over the software which was used
during the course of this project. This also includes programs which were
used for testing purposes but not in the final workflow.

1.6.1 Microsoft Visual Studio 2008

RENE is written in C# and a Visual Studio project. Visual Studio is an in-
tegrated development environment, similar to eclipse. It provides numerous
tools which facilitate the development of .NET projects. One of them is an
integrated debugger.

1.6.2 NI Vision Assistant 2010

The National Instruments Vision Assistant provides numerous tools for ma-
chine vision, one of them being an edge detector with various parameters.
This was most useful for testing the response of edge detection algorithms
to different parameter adaptations.

1.6.3 Sony Sound Forge Pro 10.0

This tool was used to analyze wave files. It provides among others a spectral
analyzer which was used to compare the properties of numerous sound files.
Moreover it contains multiple filters which are capable of reducing clicks and
crackles.

1.6.4 LabView 2010

LabView is a program which allows writing software simply by drag and
drop. No code has to be written; all elements are inserted and connected
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with the mouse. In the course of this project, it was used to test a number
of techniques to visualize properties sound. The functionalities which were
used were part of the Signal Processing toolkit which is an extension to the
main program and has to be bought additionally.

1.6.5 R

R is a program for the statistical analysis of data. It has been used to draw
histograms of different kinds of data and estimating the similarity between
the normal distribution and the data.

1.7 Structure of the report

The first chapter will introduce the surroundings of the project; it includes
also the definitions of certain terms which will be frequently used in the
thesis. Moreover the goals of the project are being specified. The second
chapter contains the analysis which was carried out to cover the areas of
interest which were outlined in the chapter before. The theoretical founda-
tions will be laid out for the implementation. The ideas which were evoked
in the first two chapters will be put to practice in the third. It contains
explanations how the concepts have been applied and obstacles overcome.
If any of these pitfalls will be to any interest of for future projects they
will be explained in detail in the fourth chapter which is dedicated entirely
to this task. The verifications which have been made to ensure the proper
functionality of the newly implemented functions are being described in the
fifth chapter called tests. In the subsequent chapter a conclusion is drawn
and recommendations are given concerning the future of the project. At
last the appendix contains a glossary and user manuals for the particular
curious reader.

This chapter contains mainly general information about the subject. An
introduction as well as the definition of the goals for the projects was made.
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2 Analysis

This chapter will describe the current status of the RENE program as well
as the specifics which are important to this thesis. Specifically the current
tracking program, including the edge detection algorithm will be examined
in detail.

Theoretical concepts of minimization, spectrum analysis and edge detec-
tion will be reviewed in this part to give the reader an introduction to the
subject and provide an insight into the work carried out during the analysis
phase.

2.1 Overview of RENE

RENE is the software used to analyze data acquired by IRENE, the 2D
probe. It provides a GUI with numerous options and is capable of extracting
sound of images with various qualities. The principle is simple, an image is
given as input and the program produces a sound file. Different aspects of
this process will be highlighted in this sub chapter.

2.1.1 Input

The input is usually stored in multiple bitmap files. The name of the file
contains useful information such as the name of the record, image acquisition
settings, the width of the recording and the position. It has the following
format: ”name of the record settings tour number and letter indicating the
part.bmp”. Where tour number is the number indicates the number of
rotations for this scan. An example of a filename would be ”DCS E100-
I126-R118 0a.bmp” [Fig: 9 ] .In the cases which have been encountered in
this project, there were eight parts for one tour.
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Figure 9: Left: 3% Zoom, Right: 100% Zoom

Eight of these images [Fig: 9 ] are then being put together by RENE.
At the same time a reduced image is created upon which basic tasks will be
executed. This includes a rough version of the edge detection. The software
discovers where the grooves are located.

2.1.2 Interface

The interface is straightforward and contains all options on one single tab.
The interface [Fig: 10 ] can be divided in three basic parts:
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1 

2 

3 

Figure 10: The three basic parts of RENE

Each of these parts has an essential function:

1. The control panel. Parameters for the extraction process.

2. Currently loaded image. Shows the progress.

3. Statistics about the selected section.

The extraction process is immediately started once an image has been
chosen with the ”Load image” button which is placed at the top left part
of the control section. Once the program is running, the options should not
be changed anymore. Although some of them are being loaded only when
the program starts the subroutine, this might lead to unexpected behavior.
There is no button to stop the execution once it has been started.

The most important part of the program is the control panel, it has nine
principal subsections [Fig: 11 ] .
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Figure 11: The nine sections of the control panel

Explaining every single subsection and the parameters in detail would
be too time-consuming, for this reason only a brief is given in the following
list:

1. The four available tracking algorithms, for this thesis only the ”new
track” option will be used. The others are either dated, or only useful
for disks recorded under special circumstances such as side lightening.

2. Decides which algorithm will be used to transform the coordinates into
sound. The output sound quality as well as the channels can be chosen
too. For this thesis only the 16 Bit Mono output will be used to create
comparable results.

3. A low pass filter can be applied to the result. Not selected by default.

4. Determines when an edge will be cut and where. There are three
possibilities to cut sound off: Width, Diff and Brightness. Width
serves as an indicator when a groove bottom has a too large or small
width. Diff is the maximal difference between two successive edges
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in the time domain. Brightness will cut of edges where the difference
between the two of them is too low. Depending on the ” or ” or ” and
” option edges which fulfill one or two criteria will be cut.

5. An edge detection algorithm can be chosen. Moreover the parameters
can be varied.

6. Allows automated processing of multiple input files.

7. Options for the manual tracking.

8. Displays how many cuts have been made.

9. Allows for the final result to be played inside the application.

The parameters for the fifth subsection [Fig: 11 ] will be described in
detail in another part of the report, part of this project will be the deter-
mination of the optimal values of these fields. The second section [Fig: 10 ]
displays the currently loaded image [Fig: 12 ] in a reduced version. Once
the program is running, the lines will be updated automatically to indicate
the progress.

Figure 12: Close up of the currently loaded image section

The colored lines indicate where an edge has been detected. There are
five lines drawn for each groove. Pink is the left border of a groove, red
indicates the same at the right side. Orange shows when a groove has been
detected by the same algorithm which detects the pink and red line, not
every part of a groove will be analyzed in detail. Blue indicates the left and
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green the right side of the groove bottom. A cursor can be placed anywhere
on the image [Fig: 12 ] , it will automatically update the three graphs below
[Fig: 13 ] .

1 2 

3 

Figure 13: Three graphs below the image

1. Histogram displaying the width distribution of the groove bottom in
black color. The blue line is a histogram of the differences between
two successive edges. The red lines indicate where the cuts will be
made.

2. Displays the cross-section of the entire image, where the red line indi-
cates where the edges have been detected.

3. The red line is a graph of the bottom width in the displayed section of
the image, the scale is on the right side. The red line is the position
of the edge on the image; the scale is on the left side. A green line
indicates that the position of the edge has been fixed by the cut algo-
rithm. The brightness has been scaled down and has is not directly
related to any scale.

2.1.3 Workflow

The workflow describes the steps RENE performs when of it is instructed to
extract sound from an image. The different steps could of course be more
detailed. But the eight steps presented in this sub chapter sum up the most
important phases of the transformation. This flowchart [Fig: 14 ] does not
include the steps necessary for the minimization process.
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User clicks 
on “Load Image” 

Load Image from 
Disk 

Create binned 
image 

Write selected wave 
files on disk 

Tracking on binned 
image 

Tracking on raw 
data 

Create raw wave 
data 

Cuts based on wave 
and image data 

Write an overview 
image on disk 

Notify the user 

Figure 14: Visualization of the RENE workflow

It is important to keep in mind the order of these steps, if not taken into
account they can severely distort test result and other outputs. For example
if one is testing a different edge detection algorithm, the output should be
tested before the cuts are made. The cuts would remove the most obvious
errors; this would lead to similar final data for different intermediate results.

2.1.4 Output

As described on the previous pages, the format of the output can be se-
lected manually by the user. Whatever option the user will choose, mono,
stereo, 16 or 24 bit, the output will be a wave file. It contains a customized
header, which contains the parameters used during the extraction. Similar
information is also being stored in the filename.

2.2 Edge Detection Algorithms

This is a short summary of the currently available edge detection algorithms
in the user interface. A deeper understanding of the algorithms and their
parameters is necessary to define constraints for the minimization process.
Moreover not every algorithm takes into account each parameter of the
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interface. The section of the interface which contains these parameters is
called ”Edge Params” [Fig: 15 ] .

Figure 15: Section containing the edge detection parameters

There are two categories of parameters. The first category is the edge
detection algorithms which can simply be selected with check box. The
second are the fields which contain numbers and represent parameters of
one or more algorithms. Five algorithms are available:

• No groove bottom

• Max Derivative

• Zero Crossing

• Threshold

• Brightness

Those which are of interest to this project will be described in a sub
chapter.

2.2.1 Max Derivative

This algorithm is available in four different versions; they can be selected
next to the algorithm. The latest version which preceded this project is
number four, it also the only one which delivers usable results. It is based
on the derivative of the intensity function. For every groove, the point
where the derivative takes the maximal or minimal value will be considered
an edge. The technique is visualized in the next image [Fig: 16 ] .
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𝑓 𝑥  

𝑓′ 𝑥  

Edge 

Figure 16: Max derivative edge detection

The function f(x) depicts the intensity graph where the groove bottom
is located, f ′(x) is the derivative of this function. It has a local minimum
as well as a local maximum which will be considered edges. Both curves
are only approximates of a real situation, the real derivative contains a
saddle point between the two extremes. The figure does not yet contain the
influence of the parameters. The max derivative algorithm will try to fit a
parabola with the length of the bottom width parameter to each pixel; the
most likely position will be taken as edge for the final step.

The first parameter is bottom width, it defines how wide the groove bot-
tom is supposed to be. The unit of measurement is pixels.

The second parameter is smooth, it defines over how many pixels an
average will be made. This will eliminate local spikes in intensity which
could lead an edge to jump to a local peak, and introduce noise in the
process. The average is done linearly.

The third parameter is called follow. When the software does the track-
ing, this parameter will weigh the current position compared to the new
one.

The fourth parameters name is fit half width and fixes the size of the
curve which will be fitted over the two extremes. The size of the curve can
be calculated by taking the parameter, multiplying by two and adding one.
[Fig: 17 ] .
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𝑓′ 𝑥  

Edge 

Fit half width 

Figure 17: Visualization of the fit half width curve

Whereas fit half width is only half the length of the violet bar [Fig: 17 ] .
The width of the curve is calculated in the following manner: fithalfwidth∗
2 + 1. The unit of measurement is once again in pixels.

2.3 Spectrum Analysis

The analysis of spectral properties of a given sound file is necessary to distin-
guish silent from other parts in a wave file. This requires knowledge about
the activity in a certain range of frequencies for arbitrary parts of a sound
file. A sound file in the wav format contains only information in the time
domain, this information has to be translated into the frequency domain. It
has to be considered that these two domains have a dual nature comparable
to those of the position and impulse of a particle. An interesting fact for
spectral analysis is that the range which an average human is capable of
hearing. Which is between 20-20,000 Hz[7]. But this capability decreases
as the age progresses, which results in a range of 20 to 14,000 Hz for an
average middle aged person[7]. The range of instruments is even narrower,
most of them do not exceed 5,000 Hz[8]. The human voice is similar and
ranges up to 7,000 Hz[9]. These facts allow us to make an assumption that
most energy in parts which contain sound will be below 7,000 or 5,000 Hz,
depending if an instrument or a voice is used.

2.3.1 Discrete Fourier Transformation

In order to transform a digital signal from the time into the frequency do-
main a Discrete Fourier Transformation has to be applied. In the case of
this project, the signal is finite which implies further consequences. Those
will be treated later on. The upper limit frequency of the Fourier transfor-
mation depends on the sampling rate, it is half of the maximum sampling
rate s [10].

fmax =
s

2
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The resolution of the Fourier transformed signal then depends on the
number of samples N which were taken from the original signal. Where the
frequency increment δf is

∆f =
fmax
N

This will be important when extracting the energy of a certain frequency
range. Another application is locating the peak intensity. The Discrete
Fourier Transformation Xd(n) of a signal x(k) with length N and offset of
k0 can then be calculated by the following formula:

Xd(n) = X(f = n ∗∆k) =

k0+N−1∑
k=k0

x(k) ∗ e−j2π
nk
K

Often we do not want to transform the entire signal at once, especially
if the subsections have to be analyzed for specific properties. In this case a
windowing function has to be applied to the signal in order to restrict side
effects which will impair the quality of the transformation. The case where
N samples are taken and the rest is set to zero corresponds to a rectangular
window. This might introduce side lobes, depending on the frequencies and
the window size. The standard approach is to multiply the values with a
windowing function before they are sent to the Fourier transformation. A
few short tests have shown that for this project the Hann(Hanning) window
shows the best results. For a sample x(k) each sample has to be multiplied
by the value of the function w(k):

w(k) = 0.5 ∗ (1− cos(
2πk

N − 1
))

The sides of this function approximate zero; this reduces the side lobes
but requires that the samples overlap. An optimal overlap percentage is
hard to define; therefore it will be tested in the designated section. Sound
Forge Pro uses 75% as a default value.

2.3.2 Wavelets

The Fourier Transformation is a useful tool for the analysis of a stationary
signal, it will be decomposed into a series of sinusoids[5]. A Wavelet Trans-
form decomposes a signal into a family of wavelets. Sinusoids are regular,
smooth and symmetric. Wavelets exist theoretically in an infinite number
of forms[12], they are not restricted to these three properties. Moreover
Wavelets have a finite duration as opposed to an infinite one of sinusoidal
signals. Signals or time series which have to be analyzed by a Wavelet
Transformation must have a size N which is a multiple of two N = 2k where
k = 1, 2, 3....
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For each step of a Wavelet Transform with T elements (where T = N
at the beginning), it calculates T/2 averages and T/2 coefficients. The
coefficients will be stored in the latter half of the array, and the averages
will be used as input for the next step. These recursive iterations continue
until a single average and coefficient are left. The averages ai in the case of
the Daubechies T4 Wavelet are calculated the following way:

ai = h0s2i + h1s2i+1 + h2s2i+2 + h3s2i+3

Where s is the signal and the scaling function coefficients h are defined
as follows:

h0 =
1 +
√

3

4
√

2

h1 =
3 +
√

3

4
√

2

h2 =
3−
√

3

4
√

2

h3 =
1−
√

3

4
√

2

The new coefficients will be calculated similarly:

ci = g0s2i + g1s2i+1 + g2s2i+2 + g3s2i+3

Where the wavelet function coefficients are defined as:

g0 = h3

g1 = −h2

g2 = h1

g3 = −h0

The calculation will shift by two places for each step until the end of the
dataset is reached.

2.4 Minimization

Minimization is the task of finding the smallest value taken on by a function
with one or more parameters. This problem appears in numerous fields and
industries such as Mechanics, Economics and Particle Physics. Even if the
subject will be referred to as minimization, the same procedure applies to
maximization, only the sign changes. A more general expression would be
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optimization, this term covers both cases. A formal definition of this task
would be

For f(x1, x2, . . . , xn) find x1, x2, . . . , xn which minimize f

This is a fairly general definition and does not yet impose any restrictions
on the parameters; this will be done later on. The minimum of a one dimen-
sional function, a function with only one parameter, has according to the
fundamental theorems of calculus one of the following properties (definitions
from the Minuit tutorial[1]):

1. The derivative ∂F
∂x = 0 (stationary point), or

2. the derivative ∂F
∂x do not exist (cusp), or

3. the point x is on the boundary of the allowed region (edge point).

The problem is that any number of points which fulfill one of these
criteria may exist. If the function is unknown the problem becomes even
larger. Therefore the task of localizing a global optimum is abandoned; a
local minimum has to be sufficient. A local minimum around x0 with the
precision p may be defined to be

f(x0) < f(x0 + p)

and
f(x0) < f(x0 − p)

The definition can be generalized to N dimensions by simply applying
the restriction to each variable. The approach to find a local variable is
simple in one dimension, vary x in small steps until it decreases no further.
The case in multiple dimensions is as usual more complicated. However for
this project certain restrictions apply:

The function f(x1, x2, . . . , xn) is not known in analytical form (1)

For some xi where 1 ≤ i ≤ n and xi ∈ Z (2)

For some xi where 1 ≤ i ≤ n, xi = {n, . . . ,m} and n,m ∈ Z and n < m
(3)

From (1) it follows that the derivate and therefore the gradients have
to be estimated using a set of points. This is time consuming and error
prone, nonetheless a closer look will be taken in the section covering the
gradient based optimizer. From (2) and (3) it follows that the function is
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not continuous. In other words, it is a discrete function because the input
values are only integers and not real numbers. Where (3) is just a special
case of (2). Due to the discrete nature of the function, the evaluation of
all possible input parameters is in theory a possibility to locate minima.
However in practice this depends on the restrictions which can be placed on
some of the parameters. If the range for even one variable is too large, the
calculation time will skyrocket and render this approach unusable. Another
important factor is the necessary time for one function evaluation. Tests
have shown that the evaluation of one set of parameters will easily take one
second; this seriously limits the number of evaluations which can be done in
a reasonable time. An example would be the following search space:

• Parameter A: 5 options

• Parameter B: 4 options

• Parameter C: 4 options

• Parameter D: 4 options

• Parameter E: 15 options

This would be a typical example for the Generic Kernel Edge detector
which will be introduced later. Although none of the parameters has a
wide range, the combination of all of them results in a staggering number of
function evaluations: 5 ∗ 4 ∗ 4 ∗ 4 ∗ 15 = 4800. And this is only an example
with very restrictive parameter ranges.

2.4.1 Nelder–Mead Method

The Nelder-Mead method is also called downhill-simplex or amoeba method
and is a non-linear optimization technique for N dimensional problems[6][2].
It is a heuristic method but requires relatively few function evaluations.
However it can only progress linearly which might lead to problems if the
seed point is far away from the minimum. It can be imagined as an animal
with N+1 feet which looks for a cool spot, where the temperature is given by
f(x). It takes into consideration three feet at each step. The hottest (P), the
second hottest (Q) and the coolest (R). For each turn the feet are reevaluated
and the P, Q and R are reassigned to other feet if necessary. There are
four possible moves which the amoeba can make: reflection, expansion, 1-
dimensional and N -dimensional contraction. These cases are best illustrated
by an example [Fig: 18 ] where N = 2, which results in an amoeba with
three feet.
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Figure 18: The four possible movements, example in 2 dimensions

Where a) describes a reflection away from a high point, b) is an expansion
beyond a low point, c) depicts a 1-dimensional contraction away from a high
point and d) is an N -dimensional contraction towards a low point. Now that
the possible moves have been described, the question remains how they will
be coordinated and when they stop. The latter question is simply answered;
there are two possible criteria for a stop. Either the amoeba converges, which
means the difference between the highest (P) and the lowest point (R) is
below a given threshold. Or the maximal number of function evaluations
has been reached.

The behavior for one turn can contain up to nine different steps. It is
best visualized in a flowchart [Fig: 19 ] .
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Figure 19: Behavior of the amoeba

The flowchart [Fig: 19 ] incorporates the four possible movements we
have seen in the previous image [Fig: 18 ] . However the algorithm is not
fool proof, there are certain cases where it might fail. For example if the
N + 1 points become aligned, the amoeba will only move in an N − 1 di-
mensional hyper plane. Despite this problem, the algorithm has a relatively
simple implementation and will be used in the course of this project. The
simplicity allows easier changes for the restrictions which will be in place for
our function f(x).

2.4.2 Conjugate Gradient Method

The conjugate-gradient method is as the name indicates, a gradient based
optimizer. But in order to calculate gradients, we need to calculate deriva-
tives first. In the case of this project, the function is not analytically known.
The derivatives have therefore to be approximated. The simplest approxi-
mation would be [1]
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∂F

∂x

∣∣∣∣
x0

≈ F (x0 + d)− F (x0)

d

Where d is a small step. The error will be the lowest order in the Taylor
expansion[1]

δ ≈ d

2
∗ ∂

2F

∂x2

∣∣∣∣
x0

This means it is favorable to choose d as small as possible, but not small
as the rounding error in F becomes significant. A safer method would be to
use symmetrically chosen points in the neighborhood of x0

∂F

∂x

∣∣∣∣
x0

≈ F (x0 + d)− F (x0 − d)

2d

This has the disadvantage that another function evaluation is required,
but the error δ falls to the second order. As we are now able to calculate
the gradient, the conjugate gradient method can be applied.

Explaining in detail the inner workings of this algorithm would go beyond
the scope of this report. A detailed derivation can be found in one of the
referenced documents[3]. Because we can reasonably assume linearity of
the function, we have to use the nonlinear version of the algorithm. This
translates to applying the linear version, but using the gradient as residual.
The residual was used to indicate how far the current point was from the
solution. Moreover the whole process has to be combined with a line search
method[4].

2.5 Simple Random Sampling

Simple Random Sampling is the most elementary form of sampling a popu-
lation called sample surveys. In statistics sample surveys are of tremendous
importance when trying to obtain information of a large population by ex-
amining only a fraction of the total. The general ideas and formulas have
been taken from the book ”Mathematical Statistics and Data Analysis”[11].
This sampling technique is probabilistic in nature because every member
of the population has a specific probability of being included in the sam-
ple. This guarantees the unbiasedness. Random Sampling has a number of
advantages:

• A small sample costs less, in this case computation time.

• Random selection is a guard against investigator biases; one could be
tempted to declare certain regions as more representative than others.

• Random sampling makes the calculation of an estimate of the error
possible.
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• A sample can be designed to have a predetermined error level.

For this project, the main use of simple random sampling will be the
estimation of the mean µ of the bottom width. The sample size will be
denoted by n, the population size as N and the value of the sample members
by X1, X2, ..., Xn. Because Xi is a random variable, the sample mean is a
random variable which distribution depends on those of the sample members.
The sample mean is considered

N̄ =
1

n

n∑
i=1

Xi

The probability distribution of N̄ will determine how accurately it es-
timates µ. In general, the more tight the distribution is centered on µ the
better the estimate. Now we have a way of calculating an estimation of the
mean, but we have no idea how accurate it is. The accuracy can be esti-
mated by using the standard error. The standard error of a sample mean
with replacement can be estimated in the following manner

σX̄ =
σ√
n

The problem is that usually the standard deviation is unknown, this also
holds true for this project. This means that the population variance has to
be estimated too. The sample standard deviation is estimated the following
way

s2 =
1

n− 1

n∑
i=1

(Xi − X̄)2

Which is almost equal to the calculation of the variance of a sample,
with the difference that in order to ensure unbiasedness, the factor has to
be adapted to 1

n−1 . To gauge the variance of our estimated mean, the
estimated variance can be calculated with the following formula:

s2
X̄ =

s2

n

These equations are everything which is necessary to introduce simple
random sampling for parameters of the edge detection algorithms.

2.6 Edge Detection

Edge detection is the process of locating discontinuities in an image. A dis-
continuity is a place where the intensity changes quickly in an image. This
will highlight areas where which exhibit these characteristics. Usually the
process of edge detection consists of applying a kernel to each pixel. Multiple
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edge detection algorithms exist, with various degrees of complexity. Most
of them are discrete differentiation operators, which mean they calculate an
approximation of the derivative of the image for each pixel. The derivatives
are calculated in both directions and then combined to calculate the direc-
tion and the magnitude of the gradient. This approach is taken by the most
common edge detectors such as the Sobel and Prewitt operator as well as
Canny and Roberts Cross. In order to create a customized edge detector,
the functionality of an existing one will be analyzed first.

2.6.1 Sobel Operator

The Sobel operator is one of the most commonly used edge detectors. The
Canny edge detector is based upon it, and the Prewitt operator executes
the same operations but with a different kernel. The goal is to calculate the
gradient at each point of the image. The underlying function is z = f(x, y)
where x, y represent the coordinates of the image and z the corresponding
intensity. The function is of course not continuous, which means the derivate
can only be calculated approximately. The gradient consists of the two
derivatives, their approximations are calculated by applying the kernels (4)
and (5) to the image. Where (4) represents the horizontal and (5) the
vertical approximation of the derivative.

Gx =

−1 0 1
−2 0 2
−1 0 2

 ∗A (4)

Gy =

−1 −2 −1
0 0 0
1 2 1

 ∗A (5)

The two results are then combined as in (6) to calculate the magnitude
of the gradient at each point in the image.

G =
√
Gx

2 +Gy
2 (6)

The higher the magnitude of the gradient, the higher the intensity changes
at the specific point in the image. This is usually a strong indicator for an
edge. The information contained in Gx and Gy can also be used to calcu-
late the direction of the gradient. But as this property will not be used in
the project we will not look into it. The original Sobel operator is useful
if we want to identify all edges and their absolute intensity. But both of
this properties are not what will be needed to successfully detect the groove
bottom, this is why the algorithm has to be customized.
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2.6.2 Customized Edge Detection

The customized edge detector will take into account only the horizontal
changes, as the groove bottoms happen to be nearly vertical in each image.
Moreover the absolute intensity is not necessary and therefore it will not be
calculated. This means the kernel is applied once and the output will be
the derivative at each point of the image. In order to provide parameters
for the optimization algorithm, the kernel size should be able to be adapted
automatically as well as the values inside the kernel. This is achieved by
using a multiplication factor for the horizontal and vertical values inside
the kernel. They define how much weight will be given the values which
are farther away from the center. Or put another way, these two values
will define how quickly the values grow in each direction within the kernel.
Summarized the kernel has the following four parameters:

1. Horizontal kernel size h = (n ∗ 2) + 1

2. Vertical kernel size v = (n ∗ 2) + 1

3. Horizontal multiplication factor i > 0

4. Vertical multiplication factor w > 0

For example, if we generate a kernel with the values (3, 3, 2, 2) we will
have the following matrix: −1 0 1

−2 0 2
−1 0 2

 (7)

This is exactly the Sobel operator. But the principle is best shown in a
larger kernel which was created with the values (5, 5, 2, 3):

−1 −2 0 2 1
−3 −6 0 6 3
−9 −18 0 18 9
−3 −6 0 6 3
−1 −2 0 2 1

 (8)

The kernel size and the multiplication factors can be adapted freely as
long as the values remain positive. However if the height of the kernel is
higher than one, a vertical averaging will be done which acts as a low pass
filter on the final sound file. Moreover does a pixel not represent the same
distance on the horizontal and vertical axis on a real record.
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2.7 Current State of IRENE

Currently the edge detection and the whole image processing part are ex-
ecuted with parameters which are given by the user. The output is not
rated automatically nor do any of the settings adapt to the different types
of the record. This means for each record the best settings have to be found
manually by rerunning the whole sound extraction process over and over
again. The results of the different runs have then to be analyzed manually
in specialized software such as Sound Forge which can analyze the spectral
properties of those sound files.

2.8 Desired State of IRENE

The goal of the project is to have the possibility to automate the detection
of the optimal parameters according to different criteria. The criteria can
be chosen by the user, an example would be a maximized Signal Noise Ratio
between the quiet and the non-quiet part. The results will automatically
be analyzed by the software; no human interaction is required to find the
optimal parameters.

The analysis chapter had a lot of ground to cover; however the intro-
duction of all this topics is necessary to gain an understanding of the entire
project.
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3 Implementation

This chapter covers the implementation; it describes how the theoretical
concepts outlined in the previous chapter have been applied to tackle the
specific problems of this project.

3.1 Discovery of quiet parts

The quiet parts at the beginning of a disk are called lead-in grooves. It is a
part where the needle has been put on the record, but no sound is recorded
yet. This part has a low energy in the frequencies which represent voice
and music. Moreover the peak activity will be in a frequency bin which
is higher than the audible range. This is due to the fact that white noise
is uniformly distributed in the frequency domain before the derivative is
taken. Once the derivative is calculated for the wav file, the noise will rise
in the frequency domain steadily by 6dB per octave. Which means the peak
intensity will be at the highest frequency. The following image [Fig: 20
] visualizes the difference between the two parts. It contains a spectrum
analysis of one second of sound and silence. Where the silent part is not
really silent, but contains a broad noise spectrum. The graph is logarithmic
in both directions.

200 Hz 1000 Hz 100 Hz 20000 Hz 4000 Hz 

-80 dB 

-52 dB 

Figure 20: WB Record, one second of silence (blue) and sound (violet)

Not clearly visible are the frequencies with the most energy, in this case
the intensity peaks at the following frequencies:

• Quiet part: -39 dB at 46,804 Hz

• Sound part: -30 dB at 663 Hz
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This observation holds true for other records as well as for other samples
in the same region of each record. This means we have now have two means
of detecting the transition from silence to sound.

3.1.1 Energy Peak

The first criterion is the energy peak of a sound sample. The energy peak
is found by transforming a sample of sound into the frequency domain with
a Fourier transformation. This process is repeated for, partially overlap-
ping, samples throughout the entire sound file. The sample size has to be
sufficiently large to not lose precision. If the sample is too small, the fre-
quency resolution becomes crude and the peak might be detected wrongly.
Moreover the sample size has to be sufficiently small to detect the transi-
tion accurately. In the course of this project the window sizes used were
between 4096 (212) and 65536 (216) where the sound files have sampling
rate of 104,000 Hz. The process consists of detecting the peak frequency
for each sample, calculate an average peak frequency for the entire file and
run through the file from the beginning while the peak frequency is above
average. Once the peak frequency drops, the transition has been detected.
There are however certain pitfalls for this approach. There is always the
possibility of an outlier which might contain a below average peak which
will mislead the program into detecting the transition prematurely. The
process of detecting the transition can be visualized as follows [Fig: 21 ] :
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Next two peaks < 
average? 

No 

No 
Yes 

Figure 21: Visualization of the transition detection

However if the sample size becomes smaller, even in reasonable steps, the
probability for outliers rises. This leads to a significant error which grows
quickly beyond an acceptable range. The countermeasure is to start at a
sample size which is large enough to not contain outliers, and then using the
result as a seed for the smaller sample sizes. This is done recursively until
the intended sample size is achieved [Fig: 22 ] .
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Figure 22: Visualization of the transition detection done recursively

The result of the transition detection is visualized in RENE itself. The
following image shows a graph with the peak intensities for a large sample
size for a sound file with a length of 7.5 seconds. The transition is represented
by the red line [Fig: 23 ] .

Figure 23: Sample size 64k, Sound Sample 3, 70% overlap
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As we can see, the peak frequencies are well above the average for the
quiet part and there are no outliers which could mislead the algorithm.
However if the sample size decreases, it becomes more difficult to spot the
transition [Fig: 24 ] .

Figure 24: Sample size 12k, Sound Sample 3, 70% overlap

With the smaller sample size, the resolution increases, but so does the
number of outliers. The record from which the sound was taken has a
transition which is easy to detect. There are almost no outliers and the
sound does not start gradually. This is the case in the following image
which displays a different record with the same resolution. In this case the
transition is not obvious at all [Fig: 25 ] .

44



3 IMPLEMENTATION

Figure 25: Sample size 12k, Sound Sample 7, 70% overlap

The only way the program was able to extract the position of the transi-
tion was by using the seed value given by the run with a large sample where
the transition is more obvious [Fig: 26 ] .

Figure 26: Sample size 64k, Sound Sample 7, 70% overlap

The result of the silence sound transition is then interpolated. A line
is drawn from the last point above, and from the first point below the
average. The point where this line crosses with the average is considered
the transition.
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3.1.2 Energy in the audible range

The second criterion is the energy contained in the audible spectrum. The
first few steps of this criterion are the same, and they have the same limita-
tions too. A Fourier transformation is applied to a sample and the energy
in each frequency bin is calculated. But then instead of finding the fre-
quency bin with the maximum intensity, the intensity of the audible range
is summed up. Once this has been done to the entire file, an average is
calculated and each sample will be classified according to the sum of its
intensities [Fig: 27 ] .

Find transition 
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intensities in the 
audible range 

Return result 

Sum < average? 

For each sample, 
start from the 

beginning 

Take the next 
sample 

Yes 

No 

Calculate the 
average of all 

samples 

Next sum > 
average? 

Calculate cross-
section 

Next two peaks > 
average? 

No 

No 
Yes 

Figure 27: Visualization of the transition detection process

In theory this approach works well, but if tested against samples with
a smooth transition, it performs badly. In the case of the third sample,
where the transition is clearly visible it performs almost as well as the other
algorithm [Fig: 28 ] :
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Figure 28: Sample size 64k, Sound Sample 3, 70% overlap

However if the transition is smooth, the detected transition is off more
than two seconds compared to the previous approach [Fig: 29 ] . And this
is in the simplest case where the sample sizes are large.

Figure 29: Sample size 64k, Sound Sample 7, 70% overlap

3.1.3 Denoising

After the transition has been roughly detected by the previous methods,
the Wavelet denoising comes into play. The part of the sound file which
contains the transition is denoised and then analyzed for a local minimum.
The denoising is done by transforming the original sound sample into the
wavelet domain. Then the Wavelet coefficients above a certain threshold
are set to zero to eliminate the high frequencies. Now the transformation
can be undone and the result is ready for further processing. The sample is
approximately half a second long and is centered on the transition detected
by the FFT. The resolution can be varied in order to avoid stumbling into a
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small local minimum. The goal is then to descend down the slope as long as
the intensity decreases; this process is visualized in the next flowchart [Fig:
30 ] :

Start 
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next sample? 

Calculate the 
average intensity 
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with the given 

precision 

Yes 

No 

Apply Wavelet filter 
around seed value 

Select the closest 
rise above average 

around the seed 
value 

Choose next sample 
to the left 

Figure 30: Visualization of the Wavelet descent

The result is once again drawn into a graph in the application to visualize
the progress. Using the same two input files as before, the results show once
again that a smoother transition is a source of problems. The simpler case
of a rough transition translates into a graph [Fig: 31 ] where the result is
clearly visible.
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Figure 31: Sample size 64k, Sound Sample 3, 70% overlap

The algorithm started at the closest crossing point and descended to a
local minimum which is represented by the red line. The closest crossing
point is defined to be a line which has a positive slope and crosses the line
which represents the average. In this case it is conceivable that the same
result could have been achieved without the seed point from the previous
steps. In the case of the second example, the result [Fig: 32 ] would have
been completely different:

Figure 32: Sample size 64k, Sound Sample 7, 70% overlap

There are multiple crossing points and a broader test sample would bring
to light even more difficulties.
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3.1.4 Specifics of the Fast Fourier Transformation

The previous chapters mention the use of the Fourier transformation to
translate the sound into the frequency domain. This process has certain
pitfalls as documented in the analysis section. To reduce side lobes a Hann
window is applied to each sample. The Hann window has been chosen
because of the properties it showed in Sound Forge. It outlines the intensity
differences in the audible frequencies best. Such a window attributes the
weight to each sample as follows [Fig: 33 ] :

Figure 33: Simple Hann Window, width of 256

This window decreases sharply to the end; the values at the borders are
zero. In order to avoid not taking into account some of the samples, each
sample which is FFT transformed overlaps to a certain percent with the
previous one. The tests will show that 70% delivers on average the best
results. This process [Fig: 34 ] is best visualized in an image showing the
overlapping Hann windows:
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Figure 34: Ten overlapping Hann windows, width of 256, overlap of 70%

The only points which are now being discriminated are those at the
very beginning and ending of the entire record. This is an acceptable result
because we expect the points of interest to be after the first and before the
last second.

3.1.5 Parameters

The whole process of the discovery of quiet parts is adaptable by certain
parameters. They have been mentioned in the previous chapters, but will
be summed up and explained in detail here. There are five parameters
which are available to the user for customization [Fig: 35 ] . By default,
the parameters which delivered the best results in the testing phase will be
used:

Figure 35: Parameters available to influence the transition

Wavelet Filter is the threshold for high frequency cut-offs in the Wavelet
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filter. It should be a multiple of 2. And it has to be lower than the total
length of the array, which is defined by Wavelet Length. This parameter
defines how wide the wavelet window will be, however the transition detected
by the peak energy algorithm will be positioned at the center. If Wavelet
Length is n, the window size will be 2n. A reasonable value is between
12 and 16. The parameter resolution describes how many points in the
noise suppressed result will be averaged. The unit of measurement is in ms.
The value 10 means that the step size for the descent will be 10 ms. This
parameter will limit the precision of the final result. FFT Window defines
the size of the sample for each Fourier transformation. It is calculated in the
same way as Wavelet Length. How far these samples will overlap is defined
by FFT Overlap, the value is in percent and should therefore be between 1
and 99. None of the input values are being tested internally in the program,
using wrong values will cause the program to malfunction. To facilitate the
use of these parameters, a list with reasonable ranges of the values is given
below:

• Wavelet Filter: 512 - 16384 and smaller than Wavelet Length

• Wavelet Length: 12-16

• Resolution: 5-50

• FFT Window: 12-16

• FFT Overlap: 50-90

3.2 Minimization by Parameter Adaption

The main goal of the project is the multidimensional minimization, but in
order to execute such a task some preconditions have to be met. A minimiza-
tion, or optimization, requires a function which can be evaluated. A function
in this project has as input the parameters of the edge detection function
and returns some measurement of the noise in the resulting sound. As de-
scribed in the analysis chapter, only a part of the record will be evaluated.
Which one depends on the result of the silence sound transition detection
and which algorithm is used for the noise level measurement. For example
the Signal Noise Ratio evaluator requires two samples; one has to the signal,
the other not. The principal mode of operation for the minimization can be
visualized as follows [Fig: 36 ] :
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Figure 36: Visualization of the basic steps in the minimization

The flowchart shown above contains the basic steps of the algorithm.
At first the entire record has to be analyzed with the standard settings and
algorithm. Afterwards the length of the silent part has to be measured, the
existence of such a part is assumed. If no such part is at the beginning,
the minimization will fail or produce strange results. It will then continue
with the task of locating a minimum. The function will be evaluated up to a
certain number of times; this depends on the restrictions imposed by the user
as well as by the applied minimization algorithm. Once the optimization
has extracted the optimal settings, they will be stored and used for sound
extraction over the whole record. The process ends with the creation of
the sound file. The optimal settings will automatically be exported to the
Graphical User Interface. During the minimization process the part of the
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GUI responsible for the edge detection parameters will be disabled [Fig: 37
] .

Figure 37: Left: Minimization disabled. Right: Minimization activated

This is necessary due to design flaws in the RENE application; some at-
tributes are internally stored as global variables and can be changed anytime
by the user.

3.2.1 Evaluating the Noise Level

Once the function has been evaluated, the result will be reduced to a number.
This process is crucial and if the evaluating function was not to function
properly, the whole result will be distorted. The function should be able to
minimize noise levels without reducing the amplitude of the sound in the
process. Over the duration of the project, multiple ways of evaluating the
noise levels inside the result have been tested:

• RMS of the bottom width

• Standard deviation of the bottom width

• RMS of a wave file data

• Standard deviation of a wave file data

• Energy in the wave file data

• Energy in the frequency domain in the audible range

• SNR between silence and sound

All of these methods have been regrouped in a separated class in the
project called Evaluator. The idea behind the fluctuation in the bottom
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width as a quality criterion is that if the values vary too frequently, this
will indicates noise. It has been observed that in low quality records, the
distribution of the bottom width is wider than usual. Another idea was to
analyze the fluctuations in the sound, the lower they are in the silent part,
the lower is the activity. The only activity which is inside the quiet part is
noise. Therefore minimizing this activity should also minimize noise. This
is frequently the case, but this quality measure does not take into account
detrimental effects on the part which contains sound. The same problem
persists if only the activity in the frequency domain inside the silent part
is measured, one might accidentally minimize the content too. The only
way around this quandary is taking into account the effects on the sound.
This is done using a Signal Noise Ratio between the two parts. The Signal
Noise Ratio is normally measured by dividing the energy of the signal by
the energy of the noise.

SNR =
Psignal
Pnoise

However the result of the equation represents better quality if the SNR
becomes higher, which is incompatible with the minimization algorithm.
Therefore the formula has to be inverted. This means the result will always
be below zero because Psignal > Pnoise. To facilitate the readability of the
result is multiplied with a constant Cr, where Cr is set to 100 for this project.

SNR =
Pnoise
Psignal

∗ Cr

Now the result of the SNR is always between 100 and 0, where 0 repre-
sents the best possible outcome.

3.2.2 Selecting Parameters for the Adaption Process

The parameters for the input functions are at the same time the parameters
for the edge detection algorithms. The more parameters a function has, the
more complicated becomes the detection of a minimum. If some parameters
can be ruled out in a preliminary study, the calculation time will decrease
significantly. Moreover for some parameters only a specific range of values
makes sense. In this sub chapter we will introduce these constraints for the
two main algorithms, Max Derivative and Generic Kernel Edge detection.
The first algorithm to be analyzed is the currently used Max Derivative al-
gorithm, he has two parameters which might be susceptible to this kind of
optimization: Fit Half Width and Smooth.The other parameters have either
no influence on the result(Edge Half Width), are not prone to optimization
due to a binary operating principle (Follow) or will be determined other-
wise (Bottom Width). The following values were retrieved using the SNR
algorithm [Fig: 38 ] .
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Figure 38: Four records and their behavior concerning smoothing

The graph shows how the different records react to changes in the smooth-
ing [Fig: 38 ] . There seems to be a valley in the middle, but no minimum
which promises an enormous gain compared to other values. It is important
however to choose a value inside this valley, a value below 2 or above 19 has
a detrimental effect on quality. There is no connection between the quality
of a record and its response to smoothing.
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Figure 39: Four records and their behavior concerning Fit Half Width

The result for the Fit Half Width parameters is more ambiguous [Fig: 39
] . While there is no obvious minimum for all of the records, some respond
extremely to high values, whereas others have a relatively flat graph. The
DCS record, which has the best quality, proves to be the most immune
sample in regard to this parameter. The findings presented in the last two
graphs [Fig: 38 ] [Fig: 39 ] were the main reason for implementing an
edge detection algorithm which has more parameters. The Generic Edge
Detection algorithm has a kernel of variable size. The five parameters have
been explained in the previous chapter, but will be briefly named again for
convenience:

1. Kernel Width

2. Kernel Height

3. Horizontal Multiplication Factor

4. Vertical Multiplication Factor

5. Fit Half Width

Whereas the last parameter is the same as in the previously tested edge
detector. All of the above mentioned parameters exert influence on the
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result. As for the previous algorithm, the parameter Bottom Width is de-
termined automatically. The first parameter to be tested is the width of the
kernel:
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Figure 40: Four records and their behavior concerning the kernel width

The results are once again ambiguous, for some records there seems to
be a valley [Fig: 40 ] , for example ChBlues or Silver Threads. For others the
response is flat and the quality increases slightly with the size. No general
rule can be deduced, but it looks as a width of 9 pixels delivers the best
results for most of the records. Another important parameter is the height
of the kernel; the manipulation of it introduces at the same time a low pass
filter and should therefore be modified with caution:

58



3 IMPLEMENTATION

 

0 

5 

10 

15 

20 

25 

30 

1 3 5 7 9 11 13 15 

SN
R

 2
0

0
 -

 1
0

0
0

 H
z 

Pixel 

SNR Response to Height ED1 

ChBlues 

DCS 

Silver Threads 

WB 

Figure 41: Four records and their behavior concerning the kernel width

The graph [Fig: 41 ] shows how most of the records react gently to the
adaption, only low values may sometimes introduce a decrease in quality.
In general the influence on the final result is once again small, as long as
the kernel height is above one. However while some records display a slight
increase in quality with an increase in height, such as DCS and ChBlues.
For others the opposite is true. Now we have seen how the size of the kernel
influences the result, but how does the weighting of the different points
inside the kernel modify the sound quality?
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Figure 42: Four records and their behavior concerning the horizontal factor

Almost all of the lines are flat [Fig: 42 ] . The adaption of this parameter
has no influence as long as the quality of the record is medium or better.
Only WB and Silver Threads, which are the record containing the most
noise, are showing minor changes.
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Figure 43: Four records and their behavior concerning the vertical factor

The Vertical Multiplication Factor delivers a similar performance [Fig:
43 ] . But this time medium quality records are affected also, such as
ChBlues. Only DCS resists any manipulation by this parameter. However,
for most of the result is no global minimum available. The impact on the
final result is once again minimal.
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Figure 44: Four records and their behavior concerning the vertical factor

Fit Half Width delivers a more vivid image, all of the records are severely
affected by this parameter [Fig: 44 ] . Some show highly irregular behavior,
which will be hard to detect for a minimization algorithm. However most of
the local minima are close to the previously used values, in a range between
3 and 9. But even in this area the results differ largely for every record.

All the results presented above represent only how the result reacts to
manipulation of one of those parameters. However if the function is nonlin-
ear, the results might be entirely different for other combinations of settings
as presented above. An example of mutual influence would be the relation-
ship between the width and the height of the kernel. In the previous images
[Fig: 40 ] and [Fig: 41 ] the relation between the score and the both pa-
rameters is weak. If we now compare these results with the following graph
[Fig: 45 ] :
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Figure 45: Four records and their behavior concerning the vertical factor

The relationship between the two parameters and the score is not that
obvious anymore. For both parameters, the result changes quickly if the
other parameter has a high value. For example the noise increases much
faster with the height if width has a value above nine.

3.2.3 Nelder-Mead Algorithm

The minimization algorithm does not contain any specifics of the project.
It will only receive a function and try to adapt the input parameter in a
way which results in a minimum as output. The translation of the input pa-
rameter to the score has to be made inside the function itself. The function
contains three basics steps: translation of the arguments, recalculation of
the edge detection and the calculation of the score. To simplify the transla-
tion, the Nelder-Mead algorithm has been customized to take into account
boundaries for each parameter. Whenever a new value for a parameter is
being calculated, it will automatically be tested if it exceeds the boundaries.

3.2.4 Conjugate-Gradient Algorithm

This minimization algorithm includes the same basic steps as the Nelder-
Mead algorithm: translation, recalculation and rating. Moreover it has to
provide a method which is able to calculate the gradient numerically. The
derivatives are calculated with the formula given in the analysis chapter.
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Often the result of the derivative is not precise enough, so the algorithm
will jump to points far outside of the scope of reasonable values. For this
reason the result of the gradients will be multiplied with a factor which
decreases the result. For the moment this value has been fixed to 50%.

3.3 Modifying the Edge Detection

As it became obvious that the currently implemented edge detection algo-
rithms would not perform significantly better, a routine with more param-
eters had to be created. The basic procedure, using the first derivative will
not be changed. It is robust and an established principle. The herein pre-
sented algorithm has been inspired by the Sobel operator, and a specific
set of parameters is used it will behave the same way. But of course, the
calculation of the derivative is only a small part of the complete edge detec-
tion algorithm. The interesting edges have to be extracted and tested for
viability. But this is not sufficient to extract sound which is natural; the
edges have to be detected with sub pixel accuracy to achieve a clear and
crisp reconstruction of the original audio data.

3.3.1 Bottom Width Calculation

One parameter which was varied during the first phase was the bottom
width. It quickly became clear that adapting this parameter randomly is a
waste of calculation time. The only goal for it is to be as close as possible
to the real value in order to deliver optimal results. The first impulse was
to deduce it manually for each image and change it every time a different
record is being analyzed. This is unnecessary and time consuming. Scanning
the entire image and simply taking the average would simply be too time
consuming, this is where random sampling comes into play. Before any edge
detection on the original image is run, this parameter will be calculated
with a given probability. As long as the bottom width samples are normally
distributed, the number of samples which is necessary can be predicted
with accuracy. If every line has the same probability of being selected, the
probability distribution can be visualized using a histogram of the entire
population. This is the case for each member of the sample X1, X2, ..., Xn.

The largest obstacle is the usage of the bottom width in each of the
edge detection algorithms. It is itself an important parameter for the max
derivative and the generic kernel edge detection. This means it has to be
calculated before the two algorithms are run. The problem is how will
the bottom width be measured without using one of the edge detection
algorithms? This is a classical chicken or the egg problem. The solution
which was chosen, is using the generic kernel edge detector but without
any correction. This means any value between zero and the entire groove
width is possible. The better the quality of a record, the closer the form
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fits a normal distribution. A very nice example would be the bottom width
distribution [Fig: 46 ] of the DCS record, which has a moderate quality but
very low noise.
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Figure 46: Histogram of the 795,883 bottom widths which were correct out
of 802,800

An opposite example would be the low quality and low contrast record
called WB. The distribution [Fig: 47 ] is massively skewed towards lower
than average values, but the peak is still close to the absolute mean.
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Histogram Bottom Width WB
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Figure 47: Histogram of the 559,339 bottom widths which were correct out
of 634,760

Moreover massively more bottoms were incorrectly detected and thrown
away. This could serve as an indicator for the record quality in a further
project. The implementation of the random sampling process is a simple
loop which doubles the sample size each time until the standard error is
low enough. Or in other words the probability for the bottom width to be
another value than the current sample average is sufficiently small. This
procedure is visualized in the next flowchart [Fig: 48 ] :
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Figure 48: Visualization of the random sampling process

3.3.2 Generic Kernel Edge Detection

As explained in the analysis chapter, the kernel which is used for this edge
detection algorithm may vary in size as well as in the weighting of the
different lines. The kernel will be applied for each line which was chosen
by the tracking algorithm to be part of the groove. Each line will then be
searched for a maximum and minimum value; these two maxima represent
the highest slope in the original image and are the border of the groove
bottom. An example how the result at this stage looks is the following
graph [Fig: 49 ] :
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Figure 49: Average of the first derivative of the first 100 lines, ChBlues
record

In order to eliminate outliers and give the groove center more weight, a
windowing function usually applied to data before a Fourier transformation
is multiplied with each line. This has proven helpful in disk with low contrast
where the detected point might bounce from one line to the next [Fig: 50 ] .
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Figure 50: Average of the first derivative of the first 100 lines, windowed,
ChBlues record

The data is now ready for the maximum and minimum detection. Once
they have been found and the position is reasonable, a curve will be fitted
over the top of both maxima to achieve sub pixel accuracy. If the result
is unreasonable, this could be the case if the bottom width is negative or
larger than the average bottom width multiplied by a certain factor. The
algorithm will try to figure out which edges are at a reasonable position
based on a likelihood distribution, and if both are highly unlikely it will
simply interpolate. The process is described in the following flowchart [Fig:
51 ] :
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Figure 51: Visualization of the error correction process

This process will affect the sound quality because it removes clicks and
crackle at an early stage. An edge is considered to be positioned reasonably
if it is close to the position of the edge on the previous line. Because most
of the time the incremental change in intensity from one line to another is
small. The probability is calculated using a Hann window which is centered
on the previous edge and has a width of two times the average bottom
width. The probability will be indicated by retrieving the value contained
in the windowing function at the position which corresponds to the relative
horizontal distance.

3.3.3 Edge detection with the second derivative

In an attempt to reduce the noise by extracting more information out of
the original image, the second derivative was integrated into a new edge
detection algorithm. While the first derivative produces two peaks, a max-
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imum and a minimum, the second produces four peaks. The procedure at
the beginning of the algorithm is to apply the Sobel operator two times to
the entire image; this produces lines with the following pattern [Fig: 52 ] :
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Figure 52: Average of the second derivative of the first 100 lines, ChBlues
record

As for the first derivative, often there are points in the image which
might interfere with the maximum and minimum detection. Especially in
the case of a low contrast record, the groove sides contain significant activity
[Fig: 53 ] .
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Figure 53: Average of the second derivative of the first 100 lines, windowed,
ChBlues record

Occasionally this measure will not be sufficient to detect the four peaks;
in this case it can be helpful to use the peaks from the first derivative as
a fall back edge. If even the edge detection on the first derivative fails,
the only remaining option is to interpolate using the last value. The error
correction of this algorithm is based on the same principles as those of the
generic kernel, but is more complex due to the possibility of a fall back to
the first derivative. Once again the bottom width is a helpful indicator of
the correctness of the measurement. The error correction process can be
depicted in a flowchart as below [Fig: 54 ] :
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Figure 54: Visualization of the error correction process

If the availability of more data is an advantage for the algorithm will be
shown in the chapter which contains the tests. The probability of an edge
position will be calculated in the same way as for the first derivative.

To sum up, the implementation had to overcome some obstacles but in
general the techniques could be implemented as planned.
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4 Problems

This chapter will shortly introduce some of the pitfalls which were encoun-
tered in the course of this project. If known the cause will be explained and
the solution will be outlined.

4.1 Restricting the Edge Detection to a specific Timeframe

When minimizing the noise in the quiet part, it is not necessary to analyze
the entire image when revaluating adapted parameters. This means the eval-
uated points have to be restricted to a certain time limit which corresponds
to the transition. An additional difficulty is the measurement of the effect of
the parameter adaption in a specific sector of the image. This is necessary
when calculating the SNR because a part of the file which contains sound
has to be taken into account too. An unresolved problem is the graphical
user interface which seems to ignore the Y coordinates when scanning the
middle of the image. The problem is visualized as follows [Fig: 55 ] :

Figure 55: Problem with the visualization of the tracking in the middle of
the record

The green and blue lines show where the edges supposedly have been
tracked.

4.2 Avoiding the relative Intensities of Wav Files

When comparing two sound streams, one has to take into account relative
scale in the wav file. The reconstruction of the source intensity is not pos-
sible once a wav file has been created. The only way to avoid this dilemma
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is to access the derivative of the movement directly. This approach is being
taken when the rating algorithms are judging the result of a minimization.

In general there were no serious problems which could not be handled.
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5 Tests

This chapter contains the tests which were made to compare the results of
this project to the expectations as well as to previous results.

5.1 Discovery of quiet parts

Using the techniques described in the previous chapter, test files will be fed
to the program to test its response to the various files and different types of
records. To shorten the process, a method of processing a wave file directly
has been introduced into the program.

5.1.1 The test samples

In order to ensure proper functioning with different kinds of records, a test
sample of seven records has been taken. All of them contain a lead-in groove
which means they have at least a second of silence in the beginning. They
will be referenced to as V1 to V7. The exact position of the quiet part has
been detected with the software Sound Forge Pro. Using a sonogram, the
transition has been determined by spotting the patterns which emerge when
sound is played with the eye. The following list describes the seven records:

Identifier Record name Length(ms) Transition(ms)

V1 DCS 7714 1071
V2 Loc 7741 1285
V3 MC101 8349 1675
V4 MC101-3 7808 2212
V5 Video Shoot 7918 4008
V6 Quinc3 5014 1324
V7 SundarDiscs 5113 2540

These files have a varying degree of quality, which means some contain
more noise than others. Moreover the transition is not always smooth.
Especially the last file V7 has a transition which is hard to detect. Even
using a sonogram and as a human, the transition is not easily spotted.
Although the unit of measurements is in milliseconds, it should be made
clear that this is slightly misleading because it simulates an accuracy which
is simply not present. More often than not, the beginning of the sound is
ambiguous.

5.1.2 Results for the test sample

Using these seven sample files as input, the results are very close to those
obtained by the eye. All but one case are detected with an error below
100ms. As described in the previous chapter, the examples with a smooth

76



5 TESTS

transition produce a bigger error. The following table contains the result
for each record:

Identifier Transition(ms) Detected Transition(ms) Error(ms)

V1 1071 1086 15
V2 1285 1300 15
V3 1675 1666 9
V4 2212 2216 4
V5 4008 4012 4
V6 1324 1421 97
V7 2540 2684 144

The average error is 41ms, which 50% below the results any other al-
gorithm yielded when tested against the same samples. These results were
obtained using the standard settings, how the standard settings were found
is described in the next sub chapter.

5.1.3 Optimal Parameters for FFT

In contrary to the minimization goal for the edge detection algorithms, where
we look for optimized settings for each record, in this case we are looking for
the optimal settings for a set of records. There are five different parameters
for the transition detection algorithm, trying to minimize them all would be
too big a task. So the optimization was limited to two key values, the size of
FFT array and the overlap percentage. The range of values was constrained
to the following ranges:

• FFT Window: 12 - 16

• FFT Overlap: 10 - 90

The error function δs is the sum of all deviations
∣∣te1 − ta1

∣∣ between the
two values for the transition:

δs =
7∑
i=1

∣∣tei − tai∣∣
All the possible combinations have simply been calculated which resulted

in the following table:
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12 13 14 15 16

0 1713 1649 1738 1430 3204
10 1691 1745 2504 2096 3287
20 1129 1207 1215 1172 3193
30 758 816 842 1151 2383
40 1368 1395 1204 1117 2433
50 613 566 887 1338 2022
60 1340 1396 1484 1411 1841
70 575 685 727 1113 2062
80 1130 1114 1198 1503 1114
90 725 833 783 1095 1717

It is important to mention that these error values represent the values
before the Wavelet denoising process. It is assumed for simplicity that an
optimal preliminary result will result in a improved overall result. The best
and the worst result have been highlighted. They are also the extremes of
a general trend, the smaller the window size, the more precise the result
will be. The result for the overlap percentage is not that obvious, it seems
as the extremes yield slightly less precise results. It can be concluded that
in general an overlap of 70% and a window size of 212 will return the best
preliminary results.

5.2 Minimization of Max Derivative

At first we are testing which kind of optimization is possible for the current
standard edge detection algorithm Max Derivative version four. As we have
seen in the previous chapter, the records which possess a low quality have
the most potential for optimization. This is why the tests will be run on the
WB record which seems to be susceptible to parameter adaptations. The
standard rating algorithm, based on SNR will be used if not indicated oth-
erwise. As explained in the previous chapter, there are only two parameters
which influence the result. Fit Half Width and Smooth, these two will be
varied in order to improve the result. All of the following results were taken
with the following settings for the cutting:

• Cuts Width: 100

• Cuts Difference: 100

• Cuts: Or

• Cuts Brightness: deactivated

The results are always compared with a file called ”Before”, it was ex-
tracted with the following settings:
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• Smooth: 5

• Fit Half Width: 5

• Bottom Width: random sampling result

• Follow: 120

5.2.1 Results with Nelder-Mead

At first, the WB record was minimized with the Nelder-Mead algorithm
which does not use any gradients. It requires seed values which indicate the
departure coordinates:

• Smooth: 15

• Fit Half Width: 15

They were chosen far away from a point which could be called a reason-
able in order to test the capability of the algorithm to descent to a minimum.
However there is always the danger that the algorithm will get stuck in a
relatively high local minimum. The initial perturbation was set to two for
each parameter; this parameter determines how fast the legs of the amoeba
will move initially. The test yielded the following result:

• Smooth: 8

• Fit Half Width: 20

If we compare the result graphically in a spectrogram with the default
settings, the overlay will look as follows [Fig: 56 ] :

200 Hz 1000 Hz 100 Hz 20000 Hz 4000 Hz 

-80 dB 

-52 dB 

Figure 56: Record: WB, Minimization: Nelder-Mead, Before: Blue, After:
Violet
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As we can see the noise in the higher frequencies has dropped radically,
however in the audible range, intensity has been added. The result will be a
decrease in the high frequency domain but an increase in the audible range.
However the result looks digital in the time domain [Fig: 57 ] :

Figure 57: Audio file after the minimization with NM

The audio file confirms the conclusions which were drawn from the in-
spection of the frequency domain. There is less high frequency noise but the
parts which contain sound have lost clarity.

5.2.2 Results with Conjugate-Gradient

The conjugate-gradient Optimizer is based on derivatives which have to be
numerically approximated; the question is how much the error introduced
by these calculations will influence the result. In order to simplify the task,
the seed values were close to the range of reasonable values:

• Smooth: 4

• Fit Half Width: 4

After more than 150 iterations the algorithm came up with the following
parameters as result:

• Smooth: 5

• Fit Half Width: 5

Apparently they are close to the seed values, by analyzing the log it
becomes obvious that the algorithm has its problems with the discreteness
of the function. Numerous values which differ by less than 10−3 are tested
in a row. Not surprisingly the resulting spectrogram contains two identical
frequency distributions [Fig: 58 ] :
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Figure 58: Record: WB, Minimization: Conjugate-Gradient, Before: Blue,
After: Violet

The picture might be considered redundant. But it proves that with two
different runs with the same settings, the result does not differ. This means
that the simple random sampling of the bottom width does not introduce
randomness into the final outcome.

5.2.3 Results with Brute Force

The brute force approach cannot really be considered a minimization algo-
rithm because it merely tests all possible outcomes to locate the minimum
within these boundaries. For this run, the following bounds were given to
the algorithm:

• Smooth: From 2 to 15

• Fit Half Width: From 3 to 15

Due to the relatively few parameters which influence the result the al-
gorithm was done after 20 minutes, it came up with the following result:

• Smooth: 8

• Fit Half Width: 9

The result is close to the values which have been used in previous se-
tups, however the spectrogram does not show significant variations in the
frequency domain [Fig: 59 ] :
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Figure 59: Record: WB, Minimization: Brute Force, Before: Blue, After:
Violet

When taking a really close look at the image, a slow decrease in overall
intensity can be recognized in the minimized audio file. However when
playing the audio file, the difference is not audible.

5.2.4 Conclusion for the Max Derivative Algorithm

Apart from the Nelder-Mead minimization, none of the algorithms was able
to create a result which was audibly different from the input. However this
difference was bought by an increase in noise in the audible range. This also
means that the minimization algorithm is flawed; a result which decreased
the quality should be punished heavily. Which could also mean that the Max
Derivative algorithm is already close to the optimum and there is almost no
room for improvement.

5.3 Minimization of Generic Kernel Edge Detector

After the conclusion was reached that the MD algorithm cannot be opti-
mized any further, the next step was to introduce an edge detector which is
more flexible and provides more parameters for the optimization algorithms.
However the increase in flexibility leads to a higher dimensional function, in
this case a five dimensional space has to be explored. This will cause ad-
ditional strain for the minimization algorithms. The other parts of RENE
remain unchanged:

• Cuts Width: 100

• Cuts Difference: 100

• Cuts: Or

• Cuts Brightness: deactivated
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The sound file which is labeled ”Before” was obtained with the following
settings:

• Kernel Width: 3

• Kernel Height: 3

• Horizontal Multiplication Factor: 1

• Vertical Multiplication Factor: 1

• Fit Half Width: 5

This kernel is equal to one which the Prewitt edge detector uses.

5.3.1 Results with Nelder-Mead

The first test was once again the Nelder-Mead algorithm, which will exe-
cute a constrained minimization in the solution space. The seed point is
considered reasonable and is at the following coordinates:

• Kernel Width: 5

• Kernel Height: 5

• Horizontal Multiplication Factor: 1

• Vertical Multiplication Factor: 2

• Fit Half Width: 2

After a search with roughly 100 function evaluations, the following point
was returned as minimum:

• Kernel Width: 11

• Kernel Height: 9

• Horizontal Multiplication Factor: 4

• Vertical Multiplication Factor: 1

• Fit Half Width: 4

This means a larger kernel size will improve the result for this record,
the specifics can be viewed in the following spectrogram [Fig: 60 ] :
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200 Hz 1000 Hz 100 Hz 20000 Hz 4000 Hz 
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Figure 60: Record: WB, Minimization: Nelder-Mead, Before: Blue, After:
Violet

The intensity drop off for frequencies higher than 10,000 Hz is obvious
and does not highlight any new patterns. The difference in the audible range
is meager. However the peak at the 45,000 Hz frequency is gone.

5.3.2 Results with Conjugate-Gradient

The last time the conjugate-gradient algorithm failed to deliver any signifi-
cant results, nevertheless the seed point has been kept close to the settings
which define the measurements which were taken for the ”Before” file:

• Kernel Width: 3

• Kernel Height: 3

• Horizontal Multiplication Factor: 2

• Vertical Multiplication Factor: 2

• Fit Half Width: 10

Once the multidimensional search was done the following result was re-
turned:

• Kernel Width: 21

• Kernel Height: 21

• Horizontal Multiplication Factor: 2

• Vertical Multiplication Factor: 2

• Fit Half Width: 10
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This result is highly surprising, because such a large kernel will cut the
range which is evaluated at each side of the groove by half of the kernel
size. If the groove bottom strays to close to the borders, it will be off
the grid. Moreover these values mean that a large number of lines have
influence on the current result and it corresponds to a low pass filter which
will reach far into the low frequencies. The result however does not exhibit
the characteristics of a low pass filter at all [Fig: 61 ] :

200 Hz 1000 Hz 100 Hz 20000 Hz 4000 Hz 

-80 dB 

-52 dB 

Figure 61: Record: WB, Minimization: Conjugate-Gradient, Before: Blue,
After: Violet

In the range which is analyzed by the SNR rating algorithm, the results
show almost no difference. But shortly afterwards the noise seems to increase
rapidly. The minimized sound file has considerably lower quality than the
original.

5.3.3 Results with Brute Force

This time the brute force approach took significantly longer, because the
complexity grows exponential the calculation time explodes. This requires a
narrower search space which includes the most likely points but will not be
able to yield large surprises. The parameters were limited to the following
ranges:

• Kernel Width: from 3 to 11

• Kernel Height: from 1 to 11

• Horizontal Multiplication Factor: from 1 to 4

• Vertical Multiplication Factor: from 1 to 4

• Fit Half Width: from 5 to 18

85



5 TESTS

The exploration of this space took more than seven hours and was run
overnight. It returned the following parameters for a minimum:

• Kernel Width: 3

• Kernel Height: 3

• Horizontal Multiplication Factor: 1

• Vertical Multiplication Factor: 3

• Fit Half Width: 15

It is remarkable that the resulting values are almost the same as the de-
fault values, only the choice of the Fit Half Width parameter is questionable.
However the output is unexpectedly weak: [Fig: 62 ]

200 Hz 1000 Hz 100 Hz 20000 Hz 4000 Hz 

-52 dB 

-80 dB 

Figure 62: Record: WB, Minimization: Brute Force, Before: Blue, After:
Violet

The decrease in high frequency noise has been bought with an increase in
low frequency noise. The overall activity has been decreased in the audible
spectrum, but the sound is now distorted. The problem in this case could
be that the algorithm found a place where the noise decreases faster than
the sound, which leads to a lower SNR score but not to an increased overall
quality.

5.3.4 Conclusion for Generic Edge Kernel Algorithm

The results for this edge detection algorithm raise more questions than they
answer. The minimization shows the weaknesses of the SNR ratio algo-
rithm as well as the difficulties of the minimization algorithms with discrete
functions. A future minimization study will have to adapt this part of the
project first. The following table gives a short summary of the divergent
results and the final score they returned:

86



5 TESTS

Minimization KH KW HF VF FHW Score

NM 11 9 4 1 4 20.5
CG 21 21 2 2 10 30.5
BF 3 3 1 3 15 10.3

5.4 Generic Edge detection

Up until now, the results of the minimization algorithms have been com-
pared, but not the edge detection algorithms themselves. This sub chapter
will analyze how the two edge detection algorithms perform relatively to
each other for each record. The previous chapter has shown that large ker-
nel values for the ED1 algorithm lead to detrimental results. Therefore a
medium sized kernel will be used to take advantage of the information of the
surrounding lines. Because of the heavy influence which the Fit Half Width
exerts, it will be adapted for each record with a simple line search. For MD
edge detection, the parameter Smooth will be set to 10 constantly. ED1 will
use the following parameters:

• Kernel Width: 9

• Kernel Height: 9

• Horizontal Multiplication Factor: 1

• Vertical Multiplication Factor: 1

These parameters will introduce a weak low pass filter for ED1. The
first record to be compared is ChBlues [Fig: 63 ] :

200 Hz 1000 Hz 100 Hz 20000 Hz 4000 Hz 

-80 dB 

-52 dB 

Figure 63: ChBlues: MD is blue, ED1 is violet

This record shows has better quality when analyzed with the old MD
algorithm. It contains clear activity in the audible range. A quick test
reveals that it sounds cleaner than the result of the ED1. This result seems
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to be an outlier, quite likely caused by the rating algorithm. The next image
shows almost no difference between the two approaches [Fig: 64 ] :

200 Hz 1000 Hz 100 Hz 20000 Hz 4000 Hz 

-80 dB 

-52 dB 

Figure 64: DCS: MD is blue, ED1 is violet

They match almost perfectly in the audible spectrum from 100 Hz up to
4,000 Hz. Afterwards the effects of the low pass filter set in and the noise
level drops significantly for the ED1 algorithm. Interestingly it erases the
peak at the 45,000 Hz frequency and reveals a new pattern with peaks at
the 10,000, 20,000 and possibly 30,000 Hz frequency. The cause of this effect
could not be determined so far. The next image shows similar characteristics
[Fig: 65 ] :

200 Hz 1000 Hz 100 Hz 20000 Hz 4000 Hz 

-80 dB 

-52 dB 

Figure 65: Silver Threads: MD is blue, ED1 is violet

The activity matches until the filter sets in; the pattern this time is more
regular and is likely caused by the filter. Interestingly does this record not
provoke a peak at the 45,000 Hz frequency for either of the two algorithms.
Contrary to the next record which exhibits this pattern again [Fig: 66 ] :
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200 Hz 1000 Hz 100 Hz 20000 Hz 4000 Hz 

-80 dB 

-52 dB 

Figure 66: WB: MD is blue, ED1 is violet

This time ED1 edge detector has again slightly more noise in the fre-
quency range between 1,000 and 4,000 Hz. However the difference is not
audible when the files are being played. The main difference is again the
effect of the low pass filter.

5.5 Second Derivative Edge Detector

This sub chapter will describe how the edge detector based on the second
derivative performs compared to the two other edge detection algorithms.
Because they do not possess the same parameters, only the Fit Half Width
parameter will be optimized for each record and algorithm. The rest of
the parameters will be fixed. Smooth will be set to 10 for MD. The ED2
algorithm does not require any other parameters than the Fit Half Width
which will be determined automatically. ED1 will be executed with the
following settings:

• Kernel Width: 5

• Kernel Height: 5

• Horizontal Multiplication Factor: 1

• Vertical Multiplication Factor: 1

Because we the effects of a large kernel were already shown in the pre-
vious chapter, the kernel has been reduced to the above mentioned values.
This time the ChBlues record shows no abnormalities for the ED1 algorithm
[Fig: 67 ] .
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200 Hz 1000 Hz 100 Hz 20000 Hz 4000 Hz 

-80 dB 

-52 dB 

Figure 67: ChBlues: MD is blue, ED1 is green, ED2 is violet

The three algorithms deliver the same results in the audible range, but
differ largely in the frequencies above 4,000 Hz. ED2 performs the worst,
despite the small low pass filter effect the Sobel operator should have, the
high frequency noise increases. The result is even worse for the DCS record
[Fig: 68 ] :

200 Hz 1000 Hz 100 Hz 20000 Hz 4000 Hz 

-80 dB 

-52 dB 

Figure 68: DCS: MD is blue, ED1 is green, ED2 is violet

Now the noise starts at lower frequencies and interferes with frequencies
higher than 1,000 Hz. Even more disturbing is the increase in activity below
200 Hz compared to the other two algorithms. Without the large kernel, the
results of ED1 and MD are almost similar throughout the entire spectrum.
For the Silver Threads record the relative results stay the same [Fig: 69 ] :
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200 Hz 1000 Hz 100 Hz 20000 Hz 4000 Hz 
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Figure 69: Silver Threads: MD is blue, ED1 is green, ED2 is violet

The noise is now throughout the entire frequency range higher than those
of the other two edge detectors. Most of the music or voices will be absorbed
by the high white noise. A surprise yields the last record which shows a new
loser [Fig: 70 ] :

200 Hz 1000 Hz 100 Hz 20000 Hz 4000 Hz 

-80 dB 

-52 dB 

Figure 70: WB: MD is blue, ED1 is green, ED2 is violet

This time ED1 exhibits the same characteristics as ED2 in the previous
pictures. This is due to the minimization process which chooses erroneously
a high Fit Half Width value for ED1. The rest of the characteristics corre-
spond to the findings from the previously tested records.

5.6 Simple Random Sampling

In the Analysis section it has been discussed that every member of the
sample has a random distribution, this will be reflected in the sample dis-
tribution as well. Basically this means the probability distribution of the
entire sample, or in this case of the average of the sample, will again show
the same distribution. We have seen in the previous chapter that most of the
disks have a Gaussian distribution of the bottom widths. This means the
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samples should be distributed in the same manner. Moreover the more sam-
ples are being taken, the closer should the mean of the samples approximate
the real mean of the population. At first, we will determine the probability
distribution [Fig: 71 ] of a sample member from the ChBlues record:
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Figure 71: Histogram of all positive bottom widths in the ChBlues record,
mean = 15.99777

Now it has to be checked if this probability distribution is reflected in
the sample distribution, at first with sample size n = 500 [Fig: 72 ] :
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Histogram ChBlues Sample Size 500
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Figure 72: Histogram of the averages from 1000 samples with n = 500, mean
= 15.99543

This distribution is very close to the original one, although the samples
are distributed wider but are also slightly shifted towards the left side. The
approximation of the mean is almost exact. This is not surprising consider-
ing half a million widths have been measured. The approximation becomes
even narrower if the sample size is increased to n = 2000 [Fig: 73 ] .
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Histogram ChBlues Sample Size 2000

dat

D
en

si
ty

15.0 15.5 16.0 16.5 17.0

0
2

4
6

Figure 73: Histogram of the averages from 1000 samples with n = 2000,
mean = 15.99779

It can now be safely concluded that random sampling works for this
record and any other which has a similar probability distribution.

The tests show where the weaknesses are, especially for the minimization
technique and the rating algorithm. But there are also some parts of RENE
which deliver stable and exact results such as the silence sound transition
detection.

94



6 CONCLUSION

6 Conclusion

This chapter will conclude the work which was carried out in the entire
project. For each major part of the thesis a distinct conclusion will be
drawn.

6.1 Discovery of quiet parts

This part of the project went well and did not pose major problems. The
techniques with the peak frequency detection and Wavelet denoising deliver
stable results and did not fail any test sample. However, with the current
implementation only the first quiet section will be detected. Moreover it is
not entirely clear if every record will contain a peak at the higher frequencies
for the noisy parts. Due to the characteristics of white noise this fact is
highly likely to hold true for almost any record.

6.2 Minimization

The minimization part is hard to sum up. Most of the records seem to be
extracted in a way which is close to the optimum. In general the functions
for the MD algorithm seem to be stable. This is harder to visualize for
the ED1 algorithm which has too many parameters. However the result of
the minimization is strongly dependent on the function which evaluates the
process of the edge detection. The SNR was the most logical choice which
took into account most of the characteristics which were important for the
overall sound quality. But it has a major flaw, if the energy of the noise
decreases faster than those of the sound, the distance may improve but in
general the sound may be inaudible.

Another big issue is the minimization algorithms. They have been cre-
ated for continuous functions, the application of them to discrete functions
as in this case is imprecise at best. Especially the conjugate-gradient method
requires a close approximation of the gradient to calculate the direction for
the line search. Moreover the solution space is limited to positive numbers
for many parameters, this requires further changes. Nelder-Mead for ex-
ample takes into account boundaries for each parameter. The case for the
conjugate-gradient method is more difficult, the translating function will
simply take the absolute value, which corresponds to a simple mirroring of
the function on the axis.

6.3 Edge detection with the second derivative

This edge detection did not at all deliver the results which were hoped for.
It introduces more noise due edges which are more often detected in the
wrong place compared to results of those of the first derivative approach. In
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general it will deliver results similar to those of the ED1 algorithm in the
best case, but most of the time the overall noise intensity raises considerably.

6.4 Perspectives

Most likely the minimization approach is not going to raise the quality of
the retrieved sound files considerably. Therefore a completely new approach
has to be taken. One of the methods which was proposed during the project
but could not be analyzed due to time constraints was the measurement of
optical flows. This technique will analyze the incremental changes in each
image and create a table of vectors which describe the movement. These
vectors could be used to extract the movements of the grove.
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7 Appendix

This chapter contains additional information which did not fit into the pre-
vious chapters.

7.1 Configuration for Tests

A short overview of the four records which were used for all tests except the
silence sound transition.

Name Quality Age

ChBlues Very noisy early 1920s
DCS Moderate 1940s

Silver Threads Good condition 1930s
WB Very old Before 1920

7.2 How-to for the new Functionalities

This subchapter contains a short introduction into the options which were
added on the GUI for the configuration of the minimization process and the
detection of silent parts.

7.2.1 Main GUI changes

The changes on the front GUI [Fig: 74 ] were minor; only three checkboxes
were added to the “Edge Params” box. Two of these are the new edge
detecting algorithms, called ED1 and ED2. The other one called APDRP is
used to indicate when a minimization should be performed.

Figure 74: Changes to the main interface
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In order to adapt the parameters of the APDRP option a new panel
has been added. Note that the activation of the APDRP checkbox will
automatically block all modification on any other element in the same group.

7.2.2 Options for the Minimization

There are two important options for the minimization process [Fig: 75 ] .
The algorithm which will be used to locate a minimum, which can be chosen
in the left Box called “Minimization algorithm”. And there is the option of
choosing different rating algorithms for the output.

Figure 75: Options for the Minimization

Moreover there is a checkbox which decides if a sound file will be written
to the disk with the default settings. This will allow the user to compare
the results of the minimization with the standard settings. The text box in
the bottom of the minimization part is only used for output purposes. The
result of the minimization will be printed as well as the intermediary steps to
inform the user of the progress. However the parameters which were found
to deliver the best sound quality will be exported directly to the interface
before the final run is executed.

7.2.3 Options for ED1 or the Generic Edge Detection

The second part contains four specific parameters for the ED1 algorithm.
The two fields [Fig: 76 ] on the left contain values for the height and width
of the kernel. The larger the kernel the more information will be taken into
account for the edge detection. A larger kernel will slow the edge detection
process down. The values have to be integers, odd and positive, or the
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algorithm will fail with an exception. The two fields on the left contain the
factors for the weighting inside the kernel. They have to be integers and
bigger than 1.

Figure 76: Options for the generic kernel

The button “Generate Wave” should only be used when an images has
been loaded into the program. It will redo the edge detection process and
write a sound file to the disk. The “file name appendix” will add the text
in the box to the filename. If the field is left empty, the parameters for the
edge detection will be used as file name appendix.

7.2.4 Options for the Detection of Silent Parts

The last part [Fig: 77 ] contains the settings which are used for the detection
of quiet parts. If not specified otherwise the default settings will be used
which are displayed in the locked fields. Once the user decides to change the
values the fields will be unlocked, but the default values will remain the same.
The 5 fields must contain positive integer values. The “Wavelet Filter” value
should not be bigger than 2 to the power of the “Wavelet Length” field
and not smaller than 512. The “Resolution” is measured in milliseconds.
The final result will be a multiple of this field. The “FFT window” size
should not exceed 16, otherwise the result might be too imprecise. The
last parameter field defines the overlap percentage of the FFT windows. It
should be between 1 and 99.
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Figure 77: Options for discovery of quiet parts

The text field should contain a valid path when pressing on the “FFT
Only” or the “FFT + Wavelet” button. The file will be loaded and ana-
lyzed with either the FFT or both techniques. The result will be printed in
the “Result” box. However if one requires more detailed output, the “Draw
Results” check box will indicate the program to draw the latest results in-
cluding the detected transition in a graph on the left side of the GUI.

7.3 Glossary

Technical vocabulary and abbreviations which have been used in this report
will be explained for readers with a non-technical background:

Simplex Is a term from geometry. A simplex is generalized triangle in
arbitrary space.[13]

Polytope Is also a term from geometry. A polytope is a the generalization
of a polygon in arbitrary dimensions.[14]

Seed point Point in an image or space where the algorithm starts.

Edge An edge is point where the intensity changes abruptly.
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GUI Graphical User Interface, the surface of software which allows the
user to interact with a program.

SNR Abbreviation for Signal Noise Ratio which describes the ratio of the
energy in the signal and the noise

RMS Abbreviation for Root Mean Square, a statistical measure.

MD Abbreviation for Max Derivative, the most recent version of the edge
detection prior to this thesis

ED1 Abbreviation for Edge Detection 1, where 1 stands for the first
derivative upon which the algorithm is based.

ED2 Abbreviation for Edge Detection 2, where 2 stands for the second
derivative upon which the algorithm is based.

7.4 Structure of the CD

A short overview of the contents of the CD which was submitted with this
report. In order to enhance the readability the characters have been re-
placed with an empty character in the report.

1. Information

2. Specification

3. Analysis

(a) Data Representation

(b) Multidimensional Minimization

(c) Sound

4. Log

5. Internal Project Files

(a) Code

(b) Image

(c) Mixed

(d) Records

(e) Sound

(f) Tests
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6. External Project Files

7. Report

(a) Images

(b) Subsections

(c) Weekly

8. Presentations

(a) Week 3

(b) Week 10

9. Links and Sources
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