/’é‘ Ecole d'ingénieurs et d'architectes de Fribourg
ZZL) Hochschule fiir Technik und Architektur Freiburg

BACHELOR THESIS

Bellrecords - Analysis of Historical Sound

Recordings
Author: Supervisor:
Romain CRAUSAZ Carl HABER
Professors: Ezxperts:
Ottar JOHNSEN Noe LuTz
Frederic BAPST Daniel FORCHELET

A thesis submitted in fulfilment of the requirements

for the degree of Bachelor of Science

realised in the

Lawrence Berkeley National Laboratory, California, USA

August 2013

~

Hes

frroeeer ‘m

BERKELEY LAB

mailto:romain.crausaz@edu.hefr.ch
mailto:chhaber@lbl.gov
mailto:ottar.johnsen@hefr.ch
mailto:frederic.bapst@hefr.ch
mailto:noelutz@google.com
mailto:daniel.forchelet@ne.ch
http://www.lbl.gov/

Declaration of Authorship

I, Romain CRAUSAZ, declare that this thesis titled, 'Bellrecords - Analysis of Historical Sound

Recordings’ and the work presented in it are my own. I confirm that:

m This work was done wholly or mainly while in candidature for a research degree at this

University.

m Where any part of this thesis has previously been submitted for a degree or any other

qualification at this University or any other institution, this has been clearly stated.
m Where I have consulted the published work of others, this is always clearly attributed.

m Where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work.
m | have acknowledged all main sources of help.

m Where the thesis is based on work done by myself jointly with others, I have made clear

exactly what was done by others and what I have contributed myself.

ii

Abstract

Bellrecords - Analysis of Historical Sound Recordings

by Romain CRAUSAZ

The Smithonian Institution possesses a collection of records made by Alexander Graham Bell
and Charles Sumner Tainter from the end of the 19th century at the Volta Laboratory. The
records of this collection are in very bad shape and some are even broken, this precludes me-
chanical sound reading devices using needles. Hopefully systems developed by Carl Haber’s
team in the Lawrence Berkeley National Laboratory and by Ottar Johnsen in the College Of
Engineering and Architecture of Fribourg Switzerland allow contactless 2D and 3D scanning to

extract the sound from a record.

The aim of this Bachelor thesis was to develop new tools and features to improve the audio
quality of the extracted file from this collection. Therefore data analysis was performed and new
algorithms were developed. The results demonstrated these new implemented tools improved
the quality. However further developments have to be proceed to obtain a sufficient audio

quality.

Acknowledgements

I would like to thank Carl Haber and Earl Cornell for giving me the opportunity to work on
my Bachelor project in their laboratory. Their knowledge, advice and ideas were very helpful

to achieve the objectives of the project.

Thanks also to the professors Ottar Johnsen and Frederic Bapst for their availability, ideas and
remarks about my work. They also gave me the opportunity to work on this thesis abroad

through their contacts with the Lawrence Berkeley National Laboratory.

Thanks to my two experts, Noe Lutz and Daniel Forchelet, for their comments, remarks and

support during this project.

The College Of Engineering and Architecture of Fribourg has also to be thanks to give the

opportunity to their student to perform their Bachelor thesis in other countries.

Finally a special thanks goes to my friend Keegan Lane for the corrections he made to this

documentation.

iv

Contents

Declaration of Authorship

Abstract

Acknowledgements

List of Figures

1

List of Tables

Introduction

1.1 History o o e

1.2 Context e

1.3 Report’s structure L

Fundamentals

2.1 Discs & Cylinders oL

2.2 Extracting sound from the picture of a recording

2.3 Audio e
2.3.1 Noise e e
2.3.2 Clicks e

2.4 Blobs . . . e

Objectives

3.1 Objectives o Lo

3.2 Tasks . . . e

Analysis

4.1 PRISM Software e
4.1.1 General information
4.1.2 Opening process of a recording oL
4.1.3 Blob Clean function

4.2 Convolution in image processing o oo
4.2.1 General information
4.2.2 Normalization
4.2.3 Border pixels

ii

iii

iv

ix

xiii

11
11
12

Contents vi
4.3 Statistics L 26
4.3.1 Standard deviation 26

4.4 Blobs Detection e e 27
4.4.1 Laplacian of Gaussian 27

4.4.2 Adaptive threshold o 29

4.5 Interpolation 30
4.5.1 General information 30

4.5.2 Linear interpolation L o Lo 30

4.5.3 Polynomial interpolation oo oo 31

4.5.4 Spline interpolation L 31

4.6 Wav format 33
4.7 Recordings 33
4.7.1 Record 287700 34

4.7.2 Record 287701 oL 34

4.7.3 Record 287881 e 35

5 Design and implementation 37
5.1 Blobs Clean o 37
5.1.1 Blobs detection e 37

5.1.2 Blobs correction e 49

5.1.3 BlobClean v2 - Implementation 52

5.1.4 GUL . L Lo e 56

5.2 Replacement of muted part with ”silence” o oo 57
5.2.1 Algorithm 57

6 Tests and validation 59
6.1 Tests description L L 59
6.1.1 Replacement of muted part with "silence” 60

6.1.2 Audio extraction 60

6.1.3 Tracking L 60

6.2 Results. o 61
6.2.1 Blobs detect algorithms oo oL 66

6.2.2 LoG algorithm 69

6.2.3 Adaptive threshold algorithms 71

6.2.4 Complete blobs cleaning algorithm 76

6.2.5 Replacement of muted part with "silence” 80

6.2.6 Audio extraction 81

6.2.7 Conclusion 87

7 Further developments 89
7.1 Blobdetection e 89
7.2 Trackingo 89
7.3 Replacement of muted part with "silence”o 90
T4 Cracks e e 90

8 Conclusion 91

Contents

vii

A Parameters of the new BlobClean function

Bibliography

93

95

List of Figures

1.1

2.1
2.2
2.3
2.4
2.5
2.6

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11

Edison’s Phonograph 1
Grooves and needle L 5
Vertically cut record Lo Lo 6
Horizontally cut record Lo 6
Horizontally and vertically cut records 7
Clicks e 8
Blobs - dirt and dust particles Lo oo 9
System schema and probeo 15
PRISM software e 16
Image structure 17
Opening process v v i i e e e e e e 18
Blob Clean function 19
Blob Clean Results 20
Blob Clean error 21
Blobs’ searching L 22
Convolution in image processing L oo 24
Border pixelso 25
Standard deviation with a normal distribution 26
Laplacian of Gaussian cross-section 28
Laplacian of Gaussian steps 28
Laplacian of Gaussian kernel o oo 29
Linear interpolation Lo 30
Derivative of linear function 31
Derivative of the spline interpolation 32
Blobs on record 287881 37
New blobs detection process 38
Brightness of lost of focus o o 39
Pixels size e 40
LoG kernel with 0, =1.6and oy =16 41
LoG kernel with o, =1.6 and oy =25 41
Normalized LoG kernel with 0, =16 and oy, =25 42
Convoluted picture 42
Enhanced blobs 43
Error of the current blobs detection algorithm 43
Groove information 44

ix

List of Figures X
5.12 High-pass kernel L L 44
5.13 Input of the high-pass filter 45
5.14 Output of the high-pass filter o 45
5.15 Averaging kernel 46
5.16 HP-Filter - absolute values - averaging filter output 46
5.17 Pixels took into account for the adaptive threshold 47
5.18 Black & white image created by the blob detection algorithm 49
5.19 Results of the spline interpolation 50
5.20 Gap Class o o 50
5.21 Relation between the pointsand gap, 51
5.22 Complete blob clean process L 52
5.23 BlobDetect class 53
5.24 BlobClean class e 53
5.25 Relation between figure 5.21 and cubic interpolation function 54
5.26 Interpolation - T1 parameter oo 55
5.27 BlobClean v2 GUI o 56
5.28 BlobClean v2 - More parameters v 56
5.29 Replacement of muted part with ”silent” algorithm 57
5.30 Find the longest silent part algorithm 58
5.31 Audio correction - GUL 58
6.1 Interactive tracking Lo o 60
6.2 Results of LoG filter with 0, =1.6 and oy =28 61
6.3 Results of LoG filter with 0, =28 and oy =16 62
6.4 Results of LoG filter with 0, =1.0and oy =1.0 63
6.5 Results of LoG filter with 0, =1.6 and oy =16 64
6.6 Results of LoG filter with 0, =28 and oy, =28 65
6.7 BRI Algorithm - lost of focus detection 66
6.8 BRI Algorithm - cracks detection L. 67
6.9 BRI Algorithm - too sensitive threshold 68
6.10 LoG Algorithm - Too sensitive threshold 69
6.11 LoG Algorithm - Threshold = 2.8, 70
6.12 Adaptive threshold Algorithm (value) 71
6.13 Adaptive threshold Algorithm (value) - Cracks 72
6.14 Adaptive threshold Algorithm (value) - Lost of focus 73
6.15 Adaptive threshold Algorithm (value) - Computation time for 3 and 6 rings . . . 73
6.16 Adaptive threshold Algorithm (derivative) 74
6.17 Adaptive threshold Algorithms, 75
6.18 Blob Clean v2result 76
6.19 Blob Clean v2result 2 77
6.20 Blob Clean v2 result 2 - graphic. o . 77
6.21 Blob Clean v2 result 3 - undetected blobs 78
6.22 Record 287881 - Replacement of muted part with ”silence” 80
6.23 Records 287700, 287701, 287860.2, 287881 81
6.24 Record 287700 - cracks L 82
6.25 Record 287700 - waveforms 82
6.26 Record 287700 - frequency spectrum 83

List of Figures xi

6.27 Record 287701 - waveforms 84
6.28 Record 287701 - frequencies’ spectrum 84
6.29 Record 287881 - waveforms 85
6.30 Record 287881 - frequency spectrum 85
6.31 Record 287881 - zoom, remaining clicks o oo 86
A.1 BlobClean v2 GUI e 93

A.2 BlobClean v2 - More parameters 94

List of Tables

4.1
4.2
4.3
4.4
4.5
4.6
4.7

6.1

Al
A2

Blob Clean function’s parameters, 19
getTresh() parameters 21
setTresh() parameters 23
wav format - some definitionso L L 33
Record 287700 e 34
Record 287701 e 34
Record 287881 e 35
Computation time 79
Blob Clean v2 function’s parameters 94
Blob Clean v2 function’s parameters 2 94

xiii

Chapter 1

Introduction

1.1 History

In 1860, Leon Scott, a French printer and bookseller, who lived in Paris, invented the first known
sound recording device. His machine, called the “Phonautograph”, created a visual image of
the sound on a paper sheet but didn’t have the ability to playback his recordings. He recorded
himself singing “Au Clair De La Lune”. In 1877, Thomas Edison invented the “Phonograph”
(see figure 1.1), the first device able to record and reproduce sound. He used cylinders and tin-
foil sheets to record the sound. However, the “Phonograph” wasn’t efficient. The tinfoil tears
easily and even with a properly adjusted stylus, the reproduction was distorted, squeaky and
only good for a few playbacks. Thomas Edison couldn’t improve the quality of his phonograph,
because he had to spend the next five years developing the New York City electric light and

power system due to an agreement. However he had discovered the secret of sound recording.

FIGURE 1.1: Edison’s Phonograph [1]

Chapter 1. Introduction 2

Gardiner Greene Hubbard, director of the Edison Speaking Phonograph & Co and owner of
phonograph’s patent, convinced Alexander Graham Bell, his son-in-law, to improve the Edison’s
invention because nobody wanted to buy a machine that wasn’t efficient. In 1881, A. G. Bell
and Charles Sumner Tainter invented the first version of the “Graphophone”, an improvement
of the Edison’s phonograph, at their Laboratory in Georgetown (Washington D.C.), the Volta
Laboratory and Bureau. Eventually they used wax-coated cardboard cylinders instead of tinfoil
to record the sound. In the process they made a lot of other experiments with that machine
leading to different prototypes. They were able to record sound on discs and cylinders using
both lateral and “hill-and-dale” (vertical) cutting types. All the experimentation and recordings

were given to the U.S. Smithsonian Institution [2, 3]

1.2 Context

The Smithonian Institution contacted the Lawrence Berkeley National Laboratory to digitize
the recordings made by Alexander Graham Bell at the Volta Laboratory. This collection, known
as the oldest reproducible records’ collection preserved in the world, contains more than 200
recordings, which have been created at the end of the 19th century. Most of them are in very

bad shape or even broken. This precludes the mechanical sound reading devices using needles

[4].

Dr Haber’s team developed a system at Lawrence Berkeley National Laboratory to extract the
sound from the recordings using contactless 2D and 3D scanning. They obtained very good
results with a lot of different recordings. They were able to extract the sound from some
recordings of the Alexander Graham Bell’s collection, however the noise level is high due to the
damage. The tools they developed aren’t specifically adapted to this collection due to the bad

shape of the recordings.

This diploma work aims to develop new analysis tools and features, which will be added to the
existing project, to be able to extract the sound from this collection with a improved quality.
To achieve this, 3 samples were taken from it. These samples will be analyzed and experiments
will be run in order to develop these tools. The project will focus on the 3D system because it

gives more information than the 2D and is more suited to this kind of bad shape recordings.

Chapter 1. Introduction 3

1.3 Report’s structure

The documentation is structured in 8 chapters starting with an introduction about the early
sound recordings. The second part presents the basic knowledge in order to understand this
project. The third part is a presentation of the objectives and tasks that has to be reached. The
fourth part regroups all the analysis of the subjects that were necessary during this project. The
fifth part presents the design and implementation of the different developed algorithms. The
sixth part regroups the tests’ definition and results with analysis and comparison of these. The
seventh part presents an analysis of possible further improvements and finally the last chapter

is the conclusion of the thesis.

An appendix, explaining the new parameters, is at the end of this document. The audio files,
weekly reports, meetings’ invitations and minutes can be found in the CD or zip file attached

to this document.

Chapter 2

Fundamentals

2.1 Discs & Cylinders

The discs, originally called Gramophone records are an analog sound storage medium. They
were made in rubber, shellac and finally in vinyl. They replaced the phonograph cylinder and
are now replaced by the digital media such as CD (Compact Disc). Both of discs and cylinders
stores the sound information in the grooves. A needle follows the grooves (figure 2.1) while the

disc or cylinder is turning. The movement of it is used to reproduce the recorded sound.

FIGURE 2.1: Grooves and needle [5]

Chapter 2. Fundamentals 6

It exists different kind of analog sound reading technique that depends on how the sound were
recorded. The oldest one, used in the Edison’s Phonograph and in some records of the Volta

Laboratory, uses the vertical motion of the stylus to reproduce sound (figure 2.2).

Movement of the needle

Ty FILLY
"

Cross Top view T Time

section N\ %.ie..o

FIGURE 2.2: Vertically cut record

The other one, used in the Gramaphone records and that replaced the previous technique, uses

the horizontal motion of the stylus (figure 2.3).

Movement of the needle
Cross K ! Top view Time
section K

FIcURE 2.3: Horizontally cut record

The figure 2.4 shows two pictures of a record opened with PRISM (see chapter 4). The left one
is a horizontally cut record and the right one is a vertically cut one. On those pictures, the

gray-scale represents the depth. The deeper a pixel is, the darker it is displayed.

Chapter 2. Fundamentals 7

Grooves

FI1GURE 2.4: Horizontally and vertically cut records

In the horizontally cut record, we can see seven parts of grooves and three in the other one. The

green squares represent silent part and the red ones represent sound at different frequencies.

2.2 Extracting sound from the picture of a recording

As explained before, the movement of the stylus represents the sound of the record. Knowing
this, it is possible to extract the sound from a high resolution picture of a recording by simulating
the movement of the needle with an algorithm. The first step consists of tracking the groove and
the second one consists of following the tracked points and extracting the sound. Carl Haber’s
team developed a complete system to create the picture of the recordings and to process it
to extract the sound. This project is called RENE 2D or 3D depending on the probe used.
An equivalent project called VisualAudio has been realized in the College of Engineering and

Architecture of Fribourg Switzerland by Dr. Ottar Johnsen.

This technology opened a lot of opportunities in sound restoration. Previously we were not able
to play some of the oldest records of the world because of their condition. With this system it
is now possible to play those records without using a mechanical sound reading devices using

needles.

To extract the sound from the picture, the software takes the derivative of the groove’s points.

Chapter 2. Fundamentals 3

2.3 Audio

2.3.1 Noise

The noise refers to the residual low level sound (usually hiss and hum) that can be heard.
The noise can come from different device such as the speakers, the converter (A/D or D/A,
quantification), or simply by the recording device (which is the case with the oldest recording
devices) [6].

2.3.2 Clicks

The clicks refers to very short noise with high amplitude that appear in the sound. The figure

2.5 shows an audio waveform with and without clicks (the white square represents clicks).

FIGURE 2.5: Clicks

Chapter 2. Fundamentals 9

2.4 Blobs

In image processing, the term blobs is used to represent a region of a digital image in which
some properties are constant or vary within a prescribed range of values. A blob can represent
a person, a face, an object in a picture. The blobs are used to determine region of interest for

further processing [7].

In this project, blobs represents all the dust and dirt particles, scratches and cracks present on
the recording. The collection of the Volta Laboratory is very old and most of the records are in
bad shape and the data taken by Carl Haber’s team contains a lot of blobs that creates clicks
and noise in the final audio file. The figure 2.6 shows parts of a recording from this collection.
All the little white regions are blobs. One of the goal of this project is to develop a new blobs
detection function in order to remove those clicks and enhance the audio quality. As explained
before, those pictures represents the depth. The dirt and dust particles appear in white because

they are over the record.

Meian bl
-11.97451 |40.16417
Save Bitmap | Leck

FIGURE 2.6: Blobs - dirt and dust particles

Chapter 3

Objectives

3.1 Objectives

The goal of this project is to develop new tools and features for the current software (PRISM).
The first step will be to implement a function, which detects the blobs automatically and
interpolates the missing points. As soon as this is functional, the major problem will be solved
and, by analyzing the new results, we will be able to find new possible improvements in order

to obtain a better sound quality on the recordings from the Volta Laboratory.

First part:

Analyze early sound recordings.

Analyze the recordings in order to get an overview of the errors that the present algorithm

gives.

Analyze the interpolation functions in audio reconstitution.

Develop a new BlobClean function.

Test this new function.

Second part:

Replace the muted part with silence.

Change the Laplacian of Gaussian function.

Analyze the parameters of the new blob clean function.

Evaluate the achieved results and compare them with the previous one.

11

Chapter 3. Objectives 12

3.2 Tasks

From these objectives, we can extract tasks in order to achieve them:

First part:

e Analyze early sound recordings.
— Read the book Development of the Phonograph at Alexander Graham Bell’s Volta
Laboratory, by Leslie J. Newville.
— Read the first part (Early steps in the history of sound recording) of the Journal Of
The Society Of Motion Picture Engineers Vol 48, April 1947.

e Analyze the recordings in order to get an overview of the errors that the current algorithm

gives.
e Analyze the interpolation functions in audio reconstitution.

— Find and read general information about interpolation.

— Read the book Digital Audio Restoration — A statistical Model Based Approach, by
Simon J. Godsill and Peter J.W. Rayner.

e Develop a new BlobClean function.

— Analyze PRISM’s source code
— Design a new blobs detection function.
— Design a new interpolation function.

— Implement these new functions.

e Test the new BlobClean function.

Chapter 3. Objectives 13

Second part:

e Replace the muted part with silence.

— Detect a silent part in the audio file.

— Replace the muted part with the silent values.
e Change the Laplacian of Gaussian function.

— Create a new Laplacian of Gaussian function that takes two different sigma for x and

y and adjust this parameter depending on the position on the recording.
e Analyze the parameters of the new blob clean function.
— Try to find dependence between parameters in order to reduce the number of it for
the user.

— Analyze the effect of each parameters on the final result.

— Create a user manual to simplify the use of the new blob clean function.
e Evaluate the achieved results and compare them with the previous one.

— Create the tracking for the recordings.
— Extract the audio from the recordings.
— Compare the results.

* With no BlobClean function.
* With the previous BlobClean function.
* With the new BlobClean function.

Chapter 4

Analysis

4.1 PRISM Software

4.1.1 General information

The figure 4.1 demonstrates the system’s concept. The capture system is controlled by the
LabView program. The MPLS180 probe (for more information about this probe, refer to [8])
records the data and send them to the LabView program. It capture 180 pixels and use a white
light that brakes up into it’s spectral components with a lens that has a huge chromatic aber-
ration. Only one wavelength \ is in focus. The depth is a function of A, f(\). . The labView
program generates the data files (PRI and .BRI). The PRI file contains the depth information
and the BRI the brightness information. However PRISM 2010 only uses the .PRI file to process
the data and create the wav file. This software includes a lot of image processing, signal pro-

cessing and tracking functions that help the user to obtain the best quality in the final audio file.

MPLS || Sends depth
| J~, | consale | measures

Labview program

Produces data files

N i \ Foous | 1 &
] ke i \ 3 .’U‘;"s. | Prism reads
R \ | the data ™ A
\ Prism 2010
AcqQUSprl | Processes the data and

computas the sound

s
way

PRSI Wy

FIGURE 4.1: System schema [9] and probe

15

Chapter 4. Analysis 16

The figure 4.2 presents the PRISM software.

P}-&nsm - [PRISM] o BT X

B Open File Options Manual Tracking Window —[&]=]
llme 753 Cyinder | Do | Dsctied | Tckig———————— Blob Cleaning - [Outier—— Fiberass spﬂ i Testni

Clezan
({111 T Periviwm| 15 | smooth 07 || M Dt fur) | __ Slit Nposs Image
Fractio [12 30 Sylus ' :
BENNANENNENE Edoe Fracto I Nen o T DeivDist] ' ||| v2Clean |72 ||] 05 P € Nesrest Point N
Make Bitmap Back Smooth [100 hum el 0 5 " (Dont Avg) & iterpoiston | __TEISNR_|
1~ Range Flat Smooth [200 Radius (um)] 200 = I™ H2Clean 15 Min Point
B | & :I' Lines to Skip [0

I Maich Ends [200

Pot || Badrbe [0 LinestoSkin2l
£l Bes] 0 Bad Borders [0 [0 T Subtract Siepe [0
1000 ™ Fix2

I Subtract Auto Lines to Shift |500

FLBi‘ - I Median [3 [15 I Fit-order [3
1 = 4 [Flipidise) I imgDeriv \yav Scale | 1

Tikt- #to Ofiset | Fiber [0

Height (um)

™ Y
m
wm
0) 0 P 0 00
Fiber
I Drawlines [~ Vertical [lntersol, Pis Shift Pict XY Pos Snd XY Pos WWav sample Groove Nb Center Pos
I DrawPoints [~ Centers [Brilliance [e [3 [&s 157 2% o > :

FIGURE 4.2: PRISM

e The top section (red) represents all the available tools including the recordings type (each
type is processed differently), tracking options, cleaning functions, wav output parameters,

ete...

e The middle section (green) displays a picture of the opened recording. The software
converts the depth information into a gray-scale image. A black pixel represents a deep

area in the recording.

e The left section (blue) displays a zoomed view of the yellow rectangle in the middle section.

It also contains the cracks’ parameters and interactive tracking tools.

e The bottom section (orange) displays the real values under the cursor in the detailed view.

It is possible to display the horizontal or vertical pixels.

Chapter 4. Analysis 17

Images structure
Each step of the opening or cleaning process creates an image. Those images are stored in an

array where the first index (i) represents the type of the picture (Bri, Raw, Flat, Sub Flat, Blob

Clean, etc...) and the second index (x) represents the pixel position.
rawlmages[if[x]
This structure implies that the pictures are stored in a one-dimensional array which makes

the image processing a little tricky at first. The figure 4.3 shows an image stored in a two-

dimensional array and its equivalent in the PRISM software.

I
6
7
8

ol N I NS~ (PO |W|O

FIGURE 4.3: Image structure

The pixel at position (x,y) in image of type z can be accessed with the formula 4.1.

rawlmages|z][x + y - width] (4.1)

Chapter 4. Analysis 18

4.1.2 Opening process of a recording

When we open a .PRI file in PRISM, some operations are automatically performed. We are
going to focus on the operations for the cylinder because even if the recordings aren’t cylinder,

the algorithm used for this type suits the Volta Laboratory’s recordings.

The figure 4.4 describes the opening process. The orange rectangles correspond to the image
that are added to the image structure. Those image are available from the detailed view. The

green circles represent operations performed by the software.

Current software - Opening process

.

PRI file }rl'.l GetFlat SubFlat SubFlat SubFlat

FIGURE 4.4: Opening process

For each pixel, the software computes an average of the number of pixels given (Flat Smooth
parameter in the cylinder tab). Then it creates the subflat image by subtracting the flat image
to the .PRI. This operation is performed to suppress the continuous component and obtain the
depth information on the record. Then the cleaning process starts and uses the subflat image

as an input.

Chapter 4. Analysis 19

4.1.3 Blob Clean function

The Blob Clean function deletes the dirt and dust particles present on the recordings. The

figure 4.5 shows the different parameters of this function.

Blob Clean
I Deriv (um) W
Deriv Dist |1_
Dilate | 0
[Blob Image

FIGURE 4.5: Blob Clean

Parameter | Description

Deriv (pm) | Sensitivity of the blob’s detector. Big value — less sensitive,
low value — more sensitive

Deriv Dist Focus distance value to detect blobs. Big value can detect
blob’s gradient edge.

Dilate Dilatation factor. For each edge point found, set a square of
"1’ at this place where the size is proportional to the dilata-
tion factor.

Blob Image | Create an image with the thresholded blobs.

TABLE 4.1: Blob Clean function’s parameters

Chapter 4. Analysis 20

SubFal ¥ ~ ¥
-16.67438 4631021 0.002 11 956004 14.27669 |11.7127

Save Bitmap Save Bitmap Save Bitmap
= ; = : y

“esv e

i
1
)
.
!f
:
?
4

B
*l“-.ﬂ' s

FIGURE 4.6: Blob Clean results

The figure 4.6 shows an example of the Blob Clean function. On the left, we can see the sub
flat image of the record (input of the Blob Clean function) with the detected blobs in orange.
The middle picture is the black and white image of the blobs and the right one is the result
after the interpolation of the detected blobs.

The actual cleaning function uses a linear interpolation to delete the blobs (it reads the threshold
image from top to bottom, column by column and draws a line between the previous and the
next good points when a blob is present). This kind of interpolation is not well adapted to
this type of file. We might think that for small blobs, a linear interpolation is the best choice,
however as explained before, we use the derivative of the groove points to extract the sound.
The derivative of a linear function is a constant, this creates jumps in the audio file resulting in
audible clicks. Moreover, the blobs detection algorithm misses a lot of blobs or doesn’t detect

the whole blob as shown in the figure 4.7.

Chapter 4. Analysis 21

FIGURE 4.7: Blob Clean error

This figure represents a part of the recording’s depth values. The big peak is a blob, the green
line is the data before the Blob Clean function and the red one is the resulting data. We can

see that the current algorithm doesn’t always detect the whole blob.

getTresh(...) function

This function contains the blob detection algorithm. The table 4.2 explains the different pa-

rameters of this function.

Parameter Description

int inv Index of the image to process

int il Set to 0 in the code (magic number)

int j1 Set to 0 in the code (magic number)

int wd Width of the image

int ht Height of the image

float thresh Deriv (um) parameter

float vtresh Deriv (um) parameter

int deFocus Deriv dist parameter

ref short|[][] thr Reference to an array that will contain the blobs
ref short][][] thr2 Reference to an array that will contain the blobs
float([][] v1 rawlmage structure

int width Width of the image

int height Height of the image

TextBox txtDilate | Text box containing the dilate parameter

TABLE 4.2: getTresh() parameters

thr and thr2 are arrays that contains 1 if the pixel is a blob or 0 if it is not.

Chapter 4. Analysis 22

The function scans the entire image searching for blobs. It also takes into account the dilate
and deFocus parameters (see figure 4.5 and table 4.2). Here are some explanation about the

blobs detection process. In the figure 4.8, the current pixel is in blue:

Yl
Y2
X1 | X2 X3 | X4
Y3
Y4

FIGURE 4.8: Blobs’s searching

The function decides if the current pixel (i,j) is a blob with the formula 4.2, the formulas 4.3

and 4.4 represents the influence of the deFocus parameter.

Ali — deFocus][j] — Ali + deFocus][j] N Ali][j — deFocus] — Ali][j + deFocus]

1 4.2
thresh thresh - (4.2)
Where A is a two-dimensional array representing the image.
If deFocus = 1:
X2—-X3 Y2-Y3
thresh + thresh > 1 (4.3)
If deFocus = 2:
X1-X4 Y1-Y4
4.4
thresh + thresh (44)

If the current pixel is detected as a blob, the function calls the setTresh(..) function.

Chapter 4. Analysis 23

setTresh(...) function

This function sets the current pixel as a blob. It sets a 3x3 square (time the dilate factor) of "1’

around the pixel. The table 4.3 explains the different parameters of this function.

Parameter Description

int i X position of the pixel

int j Y position of the pixel

int dilate Dilate factor

ref short|[][] thr | Reference to an array that will contain the blobs

TABLE 4.3: setTresh() parameters

Conclusion

After the analysis and test of the present Blob Clean function, it appears that it fails to detect
some blobs and to clean them correctly. The main goal of this project will be to design new
tools to detect and clean the blobs in order to reduce the clicks that appear in the audio file

and improve the audio quality.

Chapter 4. Analysis 24

4.2 Convolution in image processing

4.2.1 General information

In image processing, the convolution operator is used to blur, sharp, emboss, detect edge, and
many more. The operator always uses a kernel (matrix) to compute the resulting picture. The

figure 4.9 demonstrates how to compute the convolution between a kernel and an image.

(4%0)

. X
Center element of the kemnel is placed over the Eg i g;

source pixel. The source pixel is then replaced
with a weighted sum of itself and nearby pixals.

(0x0)
{0x1)
(0 x1)
(0% 0)
{0x1)
+ (-4 %2)

Source pixel

Convolution kernel
(emboss)

Mew pixel value (destination pixel)

FIGURE 4.9: Convolution in image processing [10]

4.2.2 Normalization

We have to divide each kernel’s element by the sum of all the elements to ensure that the pixel’s

values in the output image are of the same relative amplitude as those in the input image [11].

Chapter 4. Analysis 25

4.2.3 Border pixels

There are different way to deal with the border pixels when processing a convolution.

The value of the border pixel is repeated

e Mirroring the image

Repeat the image

Crop (the output image is smaller than the input image)

Set the outside pixel to zero

For this diploma work, we repeated the image for the y-axis because the recordings’ images are
circular and we repeat the value of the border pixel for the x-axis as shown in the figure 4.10.

The green parts represent the repeated pixel and the red parts represents the repeated image.

Wl L w| L Wl
Wik lw Pk w|e
Wikl w L w|e
AN N AN
BN AENAN
BN NN

FIGURE 4.10: Border pixels

Chapter 4. Analysis 26

4.3 Statistics

4.3.1 Standard deviation

The standard deviation is represented by the Greek letter sigma o and shows how the population
(data set) varies from the average. If the standard deviation is low, it indicates that the data
points are very close to the mean. If it is high, it indicates that the data points are spread out

over a large range of values.

The figure 4.11 shows how the values are spread from the mean g with a normal distribution.

0.3 04

34.1% 34.1%

0.0 01 0.2

FIGURE 4.11: Standard deviation with a normal distribution

The equation 4.5 shows how to compute the standard deviation.

1)2
o=AN_1 Z(xz —I) (4.5)

i=1
Where N is the number of samples, x; the samples values and Z the mean of the samples.

During this project, we used the standard deviation for the blob detection algorithm and we
had to compute the average for every pixel which took more time than expected. The equation
4.6 is another way to compute the standard deviation which takes much less time because it

lets us use a sliding sum to compute it [12].

1., 1Y
o= (ﬁ ;%) — <N sz> (4.6)

i=1

Chapter 4. Analysis 27

4.4 Blobs Detection

In image processing, blob detection refers to mathematical methods that are aimed at detecting
regions in a digital image that differ in properties, such as brightness or color, compared to
areas surrounding those regions. As explained in chapter 2, for this project, the blobs represent
the dirt and dust particles, cracks and scratches present on the recording. The aim of the blob
detection function is to find those particles in order to delete them and to clean the image. In

this chapter we will explore different techniques and algorithms to do sol[7].

4.4.1 Laplacian of Gaussian

The most commonly used function for the blob detection is the Laplacian of Gaussian (LoG).
This function uses a Gaussian filter to reduce the noise (because the Laplacian filter is a deriva-
tive filter and the derivative filters are very sensitive to noise) and then the Laplacian operator
to detect edge. The Laplacian operator is defined by equation 4.7 and the Gaussian operator
by equation 4.8 [13, 14].

O f(z,y) N O f(x,y)

L = 2 = 4.
(z,y) = v f(z,y) 52 o (4.7)
1 22 + 9
g(xv y) T 902 * €Xp — 252 (48)

Where x and y are the distance from the origin (0,0), and o is the standard deviation of the

Gaussian distribution.

Combining those two equations give us the Laplacian of Gaussian equation 4.9 which will be

used to create the kernel.

1 2., .2 2., ,2
LoG(x,y) = —— [l—x +y]exp—x tY

o 202 202

Chapter 4. Analysis 28

The LoG filter takes the second derivative of the image. Where the image is uniform, the result
will be zero. When an edge is detected, the LoG will give a positive response on the darker side
and a negative response on the lighter side. The figure 4.12 represents the LoG function and

how the o influences it [13]. The o controls the width of the "bell”. This affects the blur effect

of the Gaussian low-pass filter.

a Laplacian of a Gaussian

-sigma sigma

AR YA

FIGURE 4.12: Laplacian of Gaussian cross section [15]

The figure 4.13 represents the different step of the LoG operator on a picture (intensity profile

corresponds to the result of the Gaussian filtering).

I - I
OJ
|

) R

Intensity Profile
f

[} First derivative {

Second derivative || [

A I |

FIGURE 4.13: Laplacian of Gaussian steps [15]

Chapter 4. Analysis 29

We apply this filter by convolving the image with a kernel created with equation 4.9. The figure
4.14 represents a 9x9 kernel with ¢ = 1.6.

0.02 N ¥0.01-0.02
> Séries9
0.01 _,,,;/_ ~ Séries? H0-0.01
0 Séries5
~Séries3- #-0.01-0
-0.01 — ¥ -0.02--0.01
-0.02 o ¥-0,03--0.02
-0.03 o
¥-0.04--0.03
-0.04 o
o ¥.0.05--0.04
-0.05
— ¥-0.06--0.05
e ¥ -0.07--0.06
'0.07 |/ / //,,
s ™ -0.08-0.
008 v 0.08--0.07
008 & ®-0,09-0.08

FIGURE 4.14: Laplacian of Gaussian 9x9 kernel with o = 1.6

It is common to use a kernel size of 5 - o[16].

4.4.2 Adaptive threshold

Thresholding is used to separate the foreground and the background of an image. Whereas the
standard thresholding operator uses a single threshold for all pixels, the adaptive thresholding
changes the threshold dynamically. With this kind of threshold, it is possible to take into account

the changing lighting conditions [17]. This type of algorithm can be used to extract/detect the
blobs of a picture.

During this project, diverse adaptive threshold were used. For example by comparing the
deviation between a pixel and the mean with the standard deviation of the pixels around or by

comparing the pixel value with the mean of the pixels around.

Chapter 4. Analysis 30

4.5 Interpolation

4.5.1 General information

In mathematics, the interpolation is the principle of constructing new data points within the
range of a discrete set of known points. In engineering, given a number of data points (obtained
by sampling, measurement and experimentation) representing the value of a function, the in-
terpolation is an estimation of the values of this function for unknown points. It is generally

achieved with curve fitting or regression analysis.

4.5.2 Linear interpolation

The linear interpolation is the current method used in the algorithm. The value between each

known points is given by a 1%¢ order function 4.10.

y=a-x+b (4.10)

With the known points (z4,y,) and (x4, yp), the y value at x can be calculated with equation
4.11.

Y="Yat W —Ya) - (4.11)

The figure 4.15 represents this kind of interpolation.

FIGURE 4.15: Linear interpolation [18]

Chapter 4. Analysis 31

We might think that linear interpolation is appropriate for small gaps/blobs, however as ex-
plained in chapter 2, PRISM takes the derivative of the groove points to extract the sound from
the picture. The derivative of a linear function is a constant, this will create jumps in the audio
file resulting in audible clicks. The figure 4.16 shows a sinus with a linear interpolation and its

derivative.

¥

FIGURE 4.16: Derivative of linear function

4.5.3 Polynomial interpolation

The principle of polynomial interpolation is to fit one polynomial of degree n-1 going through
all the n data points. This method works fine if the degree of the polynomial isn’t too high.
Otherwise, this method is computationally expensive, oscillatory artifacts might appears and
the shape of the curve might be contrary to common sense [18]. We didn’t analyze this kind
of interpolation because it can creates artifacts in the end points (Runge’s phenomenon [19])
and we want something smooth to replace the blobs in order to avoid unnecessary clicks in the

audio file.

4.5.4 Spline interpolation

The spline interpolation is a special type of piecewise polynomial [20] called a spline. This
interpolation avoid the Runge’s phenomenon and is preferred over the polynomial interpolation.
The spline will take a shape that minimizes the bending making the first and second derivative
of the points will be continuous everywhere. This is very interesting for this project because

the audio file will be continuous and no clicks will appear because of the interpolation.

Chapter 4. Analysis 32

Let g;(x;) be a polynomial that represent the function between two data points. To achieve the
previous statement, both equations 4.12 and 4.13 must be satisfied for all 7, 1 <i<n —1. We

need a polynomial of degree 3 or higher to achieve this [21].

6i(2:) = g1 (:) (4.12)

1

g; (z;) = q;

/

+1(2:) (4.13)

The complete algorithm to find the interpolating cubic spline can be found in [21].

The figure 4.17 shows the same sinus that in figure 4.16 but with a spline interpolation and its

derivative. We can see that there is not jump in the derivative.

| ¥ix)

FIGURE 4.17: Derivative of the spline interpolation

Chapter 4. Analysis 33

4.6 Wav format

For the second part of the project, two objectives were to detect the background noise of an
audio file and to replace the muted part with it. Even if a good knowledge of the wav format

is unnecessary, we decided to present the basics of it.

The wav format is used to store audio. It contains a header and the raw audio data in time
format. The table 4.4 explains some definition that will be used during the design of those

functions [22].

Name Description

Bit size Number of bit per sample (16 in PRISM)

Sample Represent the raw audio information

Sample rate | Number of samples per second (44100 in PRISM)

Channels Number of channels (1 = mono, 2 = stereo, mono in PRISM)

Data Represents a sample

Header Used to provide information about the wav file, the header
is 44 bytes long

TABLE 4.4: wav format - some definitions

4.7 Recordings

During this project, a set of the Volta Laboratory’s records were taken. This section presents
the different information we have about those records. The collection contains 465 records (189
cylinders, 275 discs or other flat media and 1 tape reel) created by Alexander Graham Bell,
Charles Sumner Tainter and Chichester Bell at the end of the 19*" century. P. Feaster created
a discography of those records [4], however we don’t know a lot about them. We calculated the

sample frequency of these records with equation 4.14.

heightipg - RPM

Fsample = 4.14
Pl 60sec ()

Chapter 4. Analysis

34

4.7.1 Record 287700

File name

287700- 105_ 1800_ 31_ 18000- 400_ 1.pri

Real picture

Opening options

Vertical flip

RPM 15

Content unknown

Inscription Japan

Fs 4.5kHz

Other Recorded in 1885, vertically cut

4.7.2 Record 287701

TABLE 4.5: Record 287700

File name

287701- 110 1800- 36- 18000- 400 1.pri

Real picture

Opening options

Vertical flip

RPM 45

Content unknown

Inscription -

Fs 9.9kHz

Other Recorded in 1885, vertically cut

TABLE 4.6: Record 287701

Chapter 4. Analysis

35

4.7.3 Record 287881

File name

Real picture

287881-FULL1_110_1750_ 24_ 36000- 400_ 1.pri

Opening options

Vertical flip, no 180 flip

RPM 15

Content Alexander Graham Bell counting

Inscription Record made April 15 1885, AGB and CAB, to
test reproduction of numbers, disk AGB No. 1

Fs 9kHz

Other Recorded 15 April 1885, vertically cut

TABLE 4.7: Record 287881

Chapter 5

Design and implementation

5.1 Blobs Clean

5.1.1 Blobs detection

As explain in chapter 4, the present function makes mistakes and takes parameters that aren’t
easy to set due to the large variety of blobs present on the Volta Laboratory’s recordings. The

figure 5.1 shows two parts of the record 287881 with a lot of different kind of blobs.

FIGURE 5.1: Blobs on record 287881

The aim of the new function is to detect blobs and to create a black and white image representing

the blobs. This image will be used by the interpolation function to clean the recording.

37

Chapter 5. Design and implementation 38

General idea

After a lot of test and experimentation, it appears that it was not possible to detect properly
all the blobs and cracks of the recordings with only one straightforward function because of
their variety. As presented in the objectives (chapter 3), we had to design a function using no
parameter. This is not possible because a value has to be set to help the algorithm to decide if
the pixel is part of a blob. We tried to implement functions that are not simple thresholds in

order to obtain the best results with most of the recordings.

We decided to take the advantages of all the experimentation we made and to combine the
results to detect most of the blobs, cracks and probe’s lost of focus. The blob detection process

starts after the opening process explained in chapter 4. The figure 5.2 demonstrates this.

BRI file ;® = »| BriBlobs
&/

~ = .
GedD J/A‘;apt- AdaptThr Merge b

i »!
SubFlat w)_} Median —® eshValBlo (OR
Val bs

Blobs

A 4

operator)

h 4 "

s P
> P
g 4 N
&l’lter HP Filter Average Thresh, —* LoGBlobs
Mean

LoG Algorithm

L4

LoG HighPass Abs - Avg

Debug

FIGURE 5.2: New blobs detection process

Orange rectangles represent the files that are always available in the detailed view.

Green rectangles represent the files that are added to the detailed view if the debug mode is

selected in the view (see chapter 6 for more information).

Violet rectangles represent the files that are added when the blob image is selected (see

chapter 6 for more information).

Blue circles represent functions.

Chapter 5. Design and implementation 39

BRI algorithm

As explained in the chapter 4, the BRI file represents the brightness of the points. At the
current time, this file is not used in the PRISM Software. Carl Haber’s team tried to used it to
optimize the different algorithms without success. After some analysis, we saw that when the
probe lost focus, the brightness of those points were very low compared to the normal points
(figure 5.3). The detailed view shows the subflat image and the right one shows the values of
the points under the vertical red line in the BRI file. We decided to use this information to

detect those errors. This is performed by a simple threshold (equation 5.1).

Detaied view | nteractve tracking | Cracas | Low value in the BRI
Sub Flat v .
-151 6469 (316 0556 fl I e

Save Bitmap

Profile: |H|!og'a'n:| Sound |

w000 !

3500 +
3000 4 “ M‘L
F 2500 | (AN '
=2
j:;n 2000 —’ \IM w
g 1500 4 L/
0 b\/“M M Threshold
500 1)
: i 2 i T e s g ee—
0 1C'|U 2(‘30 300

FIGURE 5.3: Points’ value when lost of focus

BRIvalueO fCurrentPizel < Threshold (5.1)

To avoid false detection of blobs, we decided to process the morphological closing operation
(erosion following by a dilatation). This operation removes the small detected blobs that aren’t
real blobs.

Chapter 5. Design and implementation 40

LoG algorithm

We decided to design a new version of the LoG filter taking two different o for the kernel’s
creation because the pixel doesn’t represent the same size in pum on the record if we are in the
border or in the center of the disc. This is due to the capture system. It captures rings over the
record with the same resolution (number of pixels). As the border ring is longer on the record
than the center ring but not in the ”record’s picture”, one pixel doesn’t represents the same
size in pm. The figure 5.4 demonstrate this. The X value is a parameter that can be set before

the capture to adjust the sampling frequency.

180 pixe!s 180 pixels

W L4 W L4

/ IBO pixel\s\\

«Picture of the recording»

X pixels

FIGURE 5.4: Pixels size

The Laplacian’s equation (4.7) takes the second derivative of the function. Knowing this, it is
possible to create a new LoG equation taking two different o as parameter by computing the

second derivative of the equation 5.2. This equation is an adaptation of equation 4.8.

1 x? y2
_ cexp— [4 Y 5.2
9(z,y) = 55 - exp (20% + 207 (5.2)

The term ﬁ is a normalization factor that can be omitted because we will normalize the

kernel later.

Chapter 5. Design and implementation 41

82 (E2 y2 82 ZC2 y2
_ 2 - - N e T - = 7
LoG(z,y) = v7g(z,y) = 53 (exp (20% + 205)) 5 (eXp (202 + 202)) (5.3)

1 2 _ 2 a? Y 1 2 _ 2 a? Y
LOG(az,y):a—é.(w —ax).exp—(@-{-f‘g _{-U_;L.(y —0,) - exp — 27‘32;4—27‘5 (5.4)

2 9 2 _ 2 2 2
LoG(x,y) = <x Jx—}-y Uy)-exp—($ + Y) (5.5)

ol o4 202 20}

From equation 5.5, we created two different kernels figure 5.5 (0, = 1.6 and o, = 1.6) and 5.6

(07 = 1.6 and o, = 2.5) to see how this new formula influence the kernel.

5050
w108

FIGURE 5.5: LoG kernel with o, = 1.6 and o, = 1.6, right is the top view

w00z
.......
0402

0604
nnnnnn

FIGURE 5.6: LoG kernel with o, = 1.6 and o, = 2.5, right is the top view

Chapter 5. Design and implementation 42

The figure 5.7 represents the two previous kernels after normalization. With this kind of blob
detection algorithm, the second step is to detect the zero-crossing points and then use a thresh-
old on the derivative to decide if it is a blob or the background. However, it is not possible with

the pictures of the recordings because the luminosity isn’t constant.

s0204

FIGURE 5.7: Normalized LoG kernel with o, = 1.6 and o, = 2.5, right is the top view

The figure 5.8 shows the convoluted picture of a record and a LoG kernel. The right picture
represent the pixel values under the vertical red line in the left picture. We can see that it is
not possible to detect the zero-crossing points because we will miss some blobs (or detect them

but not as big as they really are).

Detaied view | tersctive tracking | Cracks |

[EE— : .
e [Non zero-crossing points

Save Bitmap

300 +

200 +

100 +

I SR T A

Helght (um)

FI1GURE 5.8: Convoluted picture

Chapter 5. Design and implementation 43

However, this filter is useful because it enhances the blobs (figure 5.9. We can use it with other

filters and image-processing kernel to extract the blobs.

Dietail 1 Crack " T I i %
aic vew | interactive tracking | Cracks | Detailec vew | Intermctive trasking | Cracks | Dtaisd view | iteractive tracking | Cracks |

e -l =] Lot =
7164264 [245.8750 [¢1oeaiz [te0338 2808004 [156. 705
Save Bitmap Save Biimap Save Bitmap |

FIGURE 5.9: Enhanced blobs

It has the advantage to give us the size and position of the blobs. The current blobs detection

function fails when it comes to detect all the blobs and their size as shown on figure 5.10.

—— Line0

Line 0

‘ ‘ E ; Undetected
150 1 Linear \ — oart of a blob

w0 | interpolation / \
\/ . X
50 + V4 \
, / \

/ =

N R N I 4

Helght (um)

t t
600 620 640

FI1GURE 5.10: Error of the current blobs detection algorithm

The green line represents pixels’ values of a recording before the blob detection and cleaning
function. The red line represents the results of the current algorithm and the red square represent

a blob. We can see that it doesn’t detect the complete blob.

Chapter 5. Design and implementation 44

As shown in the figure 5.2, we use an high-pass filter after the LoG operator to reduce the low
frequency fluctuation on the records. This includes the grooves information and the recording

undulation. The figure 5.11 shows the grooves information after the LoG filter.

Detailed view | Interactive tracking | Cracks |

L

Line

Helght (um)
e 8
o
=3
[—

o 100 200 300 400

FIGURE 5.11: Groove information

We use a simple high-pass kernel (figure 5.12 and compute it with the image in order to reduce

the low frequency.

2| -2 | -2
2| 8 | -2
-2 | -2 | -2

FI1GURE 5.12: High-pass kernel

Chapter 5. Design and implementation 45

The figure 5.13 shows the input and the figure 5.14 shows the output of the high-pass filter.

300 +

200 +

T

; : ;
250 300 350

Detaied view | ircerzcuve tracking | Crackes |

[~
414481 [1395253

Save Bitmap

Helght (um)

FI1GURE 5.13: Input of the high-pass filter

Cetailed ven ‘ irterachue trecieng | Cracks |

HP -
216.6438 |805.3586
Save Sitnap
1000 + \
= 500 +
£
2
b /
= /\ A |
=]
B 0 ,\\]| FF\ -~ -—-_Ai“l FL
T - = = . = =
VY I
-500 -
|
: : :
250 300 350

FIGURE 5.14: Output of the high-pass filter

We can see that the blobs are even more enhanced and the groove information is reduced. The

next step is to compute an averaging kernel with the absolute values of the high-pass filter’s

output.

Chapter 5. Design and implementation 46

The goal of the averaging filter is to create a picture with only big values when the blobs are
present in order to use an adaptive threshold to detect them. We take the absolute values to
avoid big positive and negative values to cancel each other. This filter is implemented with an

averaging kernel of size 5x5 (figure 5.15).

0.04 | 0.04 | 0.04 | 0.04 | 0.04
0.04 | 0.04 | 0.04 | 0.04 | 0.04
0.04 | 0.04 | 0.04 | 0.04 | 0.04
0.04 | 0.04 | 0.04 | 0.04 | 0.04
0.04 | 0.04 | 0.04 | 0.04 | 0.04

FIGURE 5.15: Averaging kernel

The figure 5.16 shows the input of the averaging filter, the absolute values and finally the output.

55
100 - n { n i[
T 0 Jlln i iTany (l o hil‘\ﬂj'\"\‘ \Mn Wi it e f) .r‘.rﬂ:-. Aol Bap, ahin all [T P kr. fif s
o] i.l U2 :\/I v ||I|| ¥ u_. 1] WV \ | N L ks \luﬁuv |I.r|j L IJ"L"IE
£ VI J 1]
z | I|II
2 -100 + || ||
i
-200
300 I i ' I |
o 100 200 300 400 800
Fiber
5
200 4
: h
=] i
o | {
= 'fl.r' Lo f | J
o !'ﬁ \'\« "‘L\‘J‘MMP 'I‘mkﬁnl"\) mw?ﬁﬂ : h\&"’#lﬁ*v““ﬂ"‘f’irh‘u#““’h"{l:w-«nnn'w”'ww"n m'!' w \'hrﬂ'h' il J]‘ﬂ fonfrat

0 100 200 300 500
Fiber
15
160
140 £ r
1z 4 ll Blobs
E {
S0t ||
= I
S g0 § \| T
] | 1 J
a1 | /
40 .;'"I il | ll
|/ . aps i /
4] m\f \'..'\f e N L Sy .)_f""'\.,/\._,/\}\/"v‘w L
0 f T t 1
0 100 200 300 500

FIGURE 5.16: HP-Filter - absolute values - averaging filter output

Chapter 5. Design and implementation 47

The final operation is to extract the blobs from the picture using an adaptive threshold. This
threshold is computed by getting the mean value of the specified number of points (in column
and in row) around the current pixel. Then we compare its value to the mean times a specified

value (equation 5.6).

CurrentPixel > Mean - nbMeanAuth (5.6)

As explained before, we are computing this operation vertically and horizontally around the

current pixel (figure 5.17).

CurrentPixel

FIGURE 5.17: Pixels took into account for the adaptive threshold

The pixel is defined as a blob with the formula 5.7.

> Mean - nbMeanAuth OR > Mean - nbMeanAuth(5.7)

The number of pixels used for the mean has to be high enough otherwise the result might be

wrong if a blob is big.

Chapter 5. Design and implementation 48

Adaptive threshold algorithms

For the first algorithm (AdaptThreshValBlobs), we use an adaptive threshold that is calculated
by the standard deviation of the number of given point around the current pixel and then by
comparing the deviation of the current pixel and the mean with it times a defined value. We

decide if the current pixel is a blob with equation 5.8.

| CurrentPixzel — Mean |> nbStdDevAuth - stdDev (5.8)

For the second algorithm (AdaptThreshDerivBlobs), we use an adaptive threshold that is cal-
culated by the standard deviation of the derivative for the number of point given around the
current pixel and then by comparing the deviation of the current derivative and the mean of
derivative to a constant times the standard deviation. We decide if the current pixel and the
next one are part of a blob with equation 5.10. The current derivative is compute with equation
5.9.

CurrentDerivative =| image|x+y-width] —image[z+ ((y+1) (mod height))-width] | (5.9)

| CurrentDerivative — MeanO f Derivative |> nbStdDevAuth - std Dev (5.10)

This algorithm detects the edge of the blobs but misses a function to fill the blobs. We developed
this algorithm when were trying a lot of different functions in order to detect the blobs without
parameter and with only one method. Even if this algorithm is not really useful for the blobs

detection, we decided to let it in the code.

Chapter 5. Design and implementation

49

5.1.2 Blobs correction

The blob detection algorithm (figure 5.2) creates a black and white image with the value 1 if
the pixel is part of a blob and 0 if it is part of the background (figure 5.18).

Detailed view] Interactive tracking] Cracks]
= Bobs v
-8.30239 |13.6656

0.00m 0.993002

Detailed view] Interactive tracking] Cracks]

Save Bitmap Lock

Save Bitmap Lock

FI1GURE 5.18: Black & white image created by the blob detection algorithm

As explained in the chapter 4, we use a cubic spline to correct the detected blobs. We found a

cubic spline interpolation class in the Irene software (equivalent to PRISM software but for the
2D probe). The algorithm used is the one described in [21].

Chapter 5. Design and implementation 50

The figure 5.19 shows the cubic spline interpolation of the blobs. We decided to mute the sound
(set values to zero) for the biggest blobs because when many points are missing, it is better to

mute the sound than to create values that don’t make sense.

—o— Line0 —%— Line0

| ! L V.

Helght (um)

50 100 150 200
Fiber

—o— Line0 —+— Line0

40]

30

20]

10]

0 Wm Wm PSS s Y

=]

Helght (um)

480 490 500 510 520 530 540
Fiber

FIGURE 5.19: Results of the spline interpolation

We created an interface to use the interpolation. This interface defines the method (parameters’
type, name) in order to add other type of interpolation (linear, polynomial, etc...) as further

development. Each class implementing this interface will have to conform to it.

interface IInterpolation
{
float[] interpolate(float[] points, Gap gap);

e This function returns an array with the interpolated values.
e The first parameter is an array of good points around the gap.

e The second parameter is an object representing a gap 5.20.

Gap
+startindex : int
+length :int

Ficure 5.20: Gap Class

Chapter 5. Design and implementation

51

The figure 5.21 describes the relation between the array Points// and the object gap.

Index

Points[]

5.9

6.2

6.5

5.9

5.5

1.2

1.1

0.8

1.2

W Nojun|dlw|n|IL|O

1.6

=
o

23

~

Gap

startindex =5

Length =3

N

lindex

Real Points

5.9

6.2

6.5

5.9

5.5

GAP

GAP

GAP

1.2

Wi/~ ,~h|lWIN|R|O

1.1

=
(=)

0.8

=
=

1.2

=
N

1.6

[y
w

2.3

FIGURE 5.21: Relation between the points and gap

Chapter 5. Design and implementation 52

5.1.3 BlobClean v2 - Implementation
We implemented the blob detection process in the method cleanlmage of the Cylinder.cs class.
This method regroup all the cleaning functions that are implemented in PRISM. Each function

is selected with a checkbox item in the GUI. The figure 5.22 represents the complete process of

the new blob clean function.

Start Clean
Image
I Only the new Blob Clean
process Is represented here
obClea
enable
Yes

Median Filter
Add BRI
RI blob: Blobs Image
e Yes—» Get BRI blobs BRI Image Yes—» to detailed
view
I
Add each Add LoG
Get LoG step of LoG Blobs image
blobs debug | to detailed Logllnace Yes— to detailed
view view
Add LoG
Get LoG Blobs image
blobs S Yes to detailed
view
I
Add
Get AdaptThresh
AdaptThresh Val Blobs
Val blobs image to
detailed view
]
Add
Get AdaptThresh
shDeriv Yes—» AdaptThresh shDeriv Yes—» Deriv Blobs
nabl Deriv blobs Image image to
detailed view
T
v
Merge blobs
Add General
en Blob: Yes—» blobs image
Image to detailed
view
|
h

W BlobClean
Image

F1GURE 5.22: Complete blob clean process

Chapter 5. Design and implementation 53

BlobDetect Class

We created a static class regrouping all the algorithm and function used to detect the blobs
(figure 5.23).

BlobDetect

-AdaptThreshValNbPoints : int = 201

-LoGAdapThreshNbPoints : int = 301

-AdaptThreshDeriviNbPoints : int = 201

-KernelSize :int=0

+merge(in blobArray : float[l[], in nbAlgoUsed : int, in width : int, in height : int) : float[]

+getBriBlobs(in brilmage : float[], in briThresh : float, in width : int, in height : int) : float[]

+getLogBlobs(in image : float[], in sigmaX : float, in sigmaY : float, in nbMeanAuth : float, in width : int, in height : int) : float[]
+getlogBlobsDebug(in image : float(], in sigmaX : float, in sigma¥ : float, in nbMeanAuth : float, in width : int, in height : int) : float[][]
+getAdaptThreshValBlobs(in image : float[], in nbStdDevAuth : float, in width : int, in height : int} : float[]
+getAdaptThreshDerivBlobs(in image : float[], in nbStdDevAuth : float, in width : int, in height : int) : float(]

-LoG(in x :int, iny :int, in sigma : float) : float

-LoGlin x : int, in v : int, in sigmax : float, in sigmay : float) : float

-LoG2D(in sigma : float) : float[,]

-LoG2D(in sigmax : float, in sigmay : float) : float[,]

-adaptThreshMean(in image : float[], in nbPoints : int, in nbMeanAuth : float, in width : int, in height : int) : float[]
+setMoreParam(in adaptThreshValNbPoints : int, in loGAdaptThreshNbPoints : int, in adaptThreshDerivNbPoints : int, in kernelSize : int)

FIGURE 5.23: BlobDetect class

The static variables can be changed by accessing in the menu options/BlobClean2 - more pa-

rameters (see section GUI for more information).

BlobClean Class

The BlobClean class (figure 5.24) implements the interface IInterpolation and contains all the
method to prepare the array points and the object gap for every blob to correct. This class

creates a new image with the blobs replaced by the interpolation results.

«implementation class»
BlobClean

-nbGoodPoints : int = 50

-tl:int=5

-max5pline :int = 20

+interpolate(in points : float[], in gap : Gap) : float(]

+clean(in image : float[], in thresh : float[], in width : int, in height : int) : float(]

-getBlobSize(in thresh : float[], in width : int, in height : int, in x :int, in v : int) : int

-getNbPrevGoodPoints(in thresh : float[], in width : int, in height : int, in x : int, in v : int, in max : int) : int
-getNbNextGoodPoints(in thresh : float[], in width : int, in height : int, in x : int, in y : int, in max : int, in blobSize : int) : int

FIGURE 5.24: BlobClean class

Chapter 5. Design and implementation 54

The clean function is called to process the complete cleaning. It takes in parameters the image
to correct, the output of the blob detection algorithm and the size of the image. This function
will create the points array and gap object in order to call the interpolate function. This is done
by using 3 private methods. One gives the blob’s size in the actual column, the two others give
the number of good points before and after the blob with a maximum defined by the constant
nbGoodPoints.

To interpolate the blob’s points, we use the class Utils. CubicSpline that was available in the

Irene software. The function FitAndEval returns an array with the interpolated points.

public float[] FitAndEval(float[] x, float[] y, float[] xs, bool debug = false)
{

x represents the x values of the good points around the gap (here the index).
y represents the y values of the good points around the gap.

xs represents the x values of the points to interpolate.

|index Points[] Index Real Points
0 5.9 0 5.9
1 6.2 1 6.2
2 6.5 Gap 2 6.5
3 5.9 startindex =5 3 5.9
4 55 / Length =3 \ 4 55
5 1.2 5 GAP
] 1.1 6 GAP
7 0.8 7 GAP
8 1.2 8 1.2
9 1.6 9 1.1
10 23 10 0.8
11 1.2
12 1.6
13 2.3
] bl xs
0 5.9 5
1 6.2 6
2 6.5 7
3 5.9
4 5.5
8 1.2
9 1.1
10 0.8
11 1.2
12 1.6
13 2.3

FIGURE 5.25: Relation between figure 5.21 and cubic interpolation function’s parameters

Chapter 5. Design and implementation 55

The interpolation isn’t use to create new real data points but to create a smooth transition
between the existing data points. For the biggest blobs, we decided to make a transition to zero
to avoid points that doesn’t make any sense. The constants of this class define the maximum
points to interpolate, the number of good points taken before and after the gap and the number

of points (T1) that will create the transition to zero (see figure 5.26).

T1: ngg

FIGURE 5.26: Interpolation - T1 parameter

This will result in a muted part in the audio file because the derivative of these points will be

ZET0.

Chapter 5. Design and implementation 56

5.1.4 GUI

All the basic parameters and function are implemented in the top section of PRISM (red square

in figure 4.2). The figure 5.27 represents the tabs available for the new blob clean function.

Blob Clean v2 Elob Clean v2 Elob Clean v2
[Enable [~ Gen Blob Img [Enable I~ Gen Blob Img [Enable ™ Gen Blob Img
BRI Thresh | LoG Fiter | Adapt Thresh | BRI Thresh LoG Fiter | Adapt Thresh | BRI Thresh | LoG Fiter Adapt Thresh
Threshold | 400 Sigma X | 1.6 Thresh | 2.2 Threshval | 22 [Elob Img
I~ Ensable
SigmaY | 16 I Deb

’ = Threshderiv [35 | Bloblmg

[Enable [Blob Img [Enable [~ Blob Img “ I Enable

FIGURE 5.27: BlobClean v2 GUI

The function has to be enabled with the top left check box. The top right check box gives the
option to add the general blob image to the detailed view.

Fach blob detection algorithm can be enabled. This has been done for parameter tuning. When
adjusting the parameters of one algorithm, the user doesn’t have to compute all of them. For

each blob detection algorithm, it is possible to create and add the blob image in the detailed

view.

The others parameters correspond to those explained before in this chapter.

For the blob detection, some parameters are hidden in the menu option/BlobClean2 - more
parameters. Those parameters should not be changed for most of the recordings. The figure

5.28 shows the dialog box that appears when the user accesses to this menu.

Bleb Clean 2 - More parameters'. = | E &J

LoG Filter
Kernel size 5
Mb points 301
Adapt Thresh
Mb points val 2

Mb points deriv 2

cors

F1cUre 5.28: BlobClean v2 - More parameters

Chapter 5. Design and implementation 57

5.2 Replacement of muted part with ”silence”

As explained before in this chapter, we decided to mute the sound when the blob is too big. After
some tests and analysis, it appears that those muted parts were not pleasant for the auditor.
This phenomenon is comparable to telephone’s communications. In those communications,
there is always a background noise even if nobody is speaking to let the users know that the

connection is still set.

The goal of this function is to detect the background noise and to replace the muted part with

it so the user can not hear the gap.

5.2.1 Algorithm

The figure 5.29 represents the general idea of the algorithm. It uses the fact that most of the
samples can be used as background noise. Even when some music is playing or somebody is
talking, the samples values go by the lowest one. We use this to detect the longest part with
only low samples values. This part is assumed to be background noise. However this algorithm
wasn’t good enough because even if we take 70% of the samples, the noise can vary around the
threshold value resulting in a short silent part that were repeated to fill the muted part. This

created strange noise in the audio file.

o e — Sort on copy of
/ : el . Find the longest the data to find
|Start of corrAudio data to process it > »

. muted part the lowest
(3 times)
samples
Replacethe Takes 70% of the

samples value

higher than the

threshvalue to
zero

F

Y

Find the longest
silent part

value and find the |
threshvalue for |

silent

Delete the muted

_ | Extract the silent

samples

part from the
sorted array

Replace the

muted part with
silent samples

Y

FIGURE 5.29: Replacement of muted part with ”silent” algorithm

Chapter 5. Design and implementation 58

To correct this, we decided to set a maximum gap value between two silent part when we detect
the longest silent part. If the gap is smaller, the samples that were higher than the threshold
value are integrated to the silent part. The maximum gap size starts at 15 samples and is incre-
mented by 5. This is computed until the longest silent part is equal or longer than the longest
muted part (with a limit of 5 iterations, which means that the maximal gap is 35 samples). If
the longest silent part found is smaller than the muted one, we repeat it to fill the gap. The
figure 5.30 represents the algorithm to find the longest silent part.

maxLen = 0, indStartMaxLen =-1, counter = 0, maxGapSize = 15

maxLen < maxMute && counter < 5

counter++

for: all samples

T dataCopy2[i] =0
index =i, length = 0, gapSize = 0, over = false F
lover
gapSize =0
| < dataCopy Length &8& dataCopy2[i] 1=0
[i++ length ++

i < dataCopy2 length && dataCopy2[i]==0
[I++, gapSize++

T apSize > maxGapSize || | == dataCopy2 length =

over = frue
T length = maxLen F

length = length + gapSize
maxLen = length

indStartmaxlen = index

maxGapSize = maxGapSize + 5

FI1GURE 5.30: Find the longest silent part algorithm

We added a function called corrAudio in the class Utils. Wav taking in parameter the data that

will be written into the wav file and returning a new array with the corrected data.

public int[] corrAudio(int[] data)
{

This algorithm can be activated in the GUI with the check box Audio Correction (figure 5.31).

| Audio Correction

FIGURE 5.31: Audio correction - GUI

Chapter 6

Tests and validation

This chapter describes all the tests’ procedures and an analysis of the results. We tested all
the implemented algorithm and compare the results in order to find the best set of parameters.
As second test, the audio quality will be compared with the previous BlobClean function. We
proceeded most of the test on every records. However we presents only the interesting results
in this chapter. For every record, we just tested a part of them because of the time it takes to

create the tracking and to process the blob cleaning.

6.1 Tests description

LoG with 2 different sigmas

The goal of this test is to compare the results of the LoG algorithm when using 2 different
sigmas and define if this might be a subject of further development in order to automatize these
parameters. First we will use the record 287881 and if the results are good enough, we will

proceed the test on all the other records.

The test will consist of opening 3 different rings of the record. One in the border, one in the
middle and one in the center. For each rings, 7 different combinations of sigmas will be tested

and compared.

e 0, =0,=10 e 0,=16,0,=10 e 0, =28,0,=16
e 0,=0,=16 e 0,=16,0, =238
® 0, =0y, =238 e 0,=10,0,=1.6

59

Chapter 6. Tests and validation 60

BlobDetect algorithms

The goal of this test is to verify that the implemented blob detection algorithms work on all the

available records.

6.1.1 Replacement of muted part with ”silence”

The goal of this test is to verify that the implemented algorithm works on all the available

records. Only the final audio file with and without this option activated will be analyzed.

6.1.2 Audio extraction

The goal of this test is to compare the quality of the final audio file between the previous
algorithm and the new ones. This is usually done by testing the algorithm with our own record.
However this is not possible and will result in a purely subjective comparison. The criteria will
be the noise level and its characteristics and the number of clicks presents on the records. This

test will be run for every available record.

6.1.3 Tracking

During the tests’ procedures, it appears that the interactive tracking was less efficient than the
manual tracking. It creates oscillations in the tracking resulting in clicks and artifacts in the
final audio file (figure 6.1).

FIGURE 6.1: Interactive tracking

This is the reason we only used the manual tracking tool for the tests.

Chapter 6. Tests and validation 61

6.2 Results

LoG with 2 different sigmas

This test shows that it is not a good idea to use two different o for the Laplacian of Gaussian
algorithm. The blobs are deformed after the convolution with a kernel created with two different
o. The figures 6.2 and 6.3 show the blobs before and after the convolution, we can see how the

blobs are deformed in the axis where the o is bigger. We decided to let the this option in the

code and GUI in case of further development.

Detailed view I Interactive tracking I Cracks I Detailed view] Interactive tracking] Cracks]

Median = [-
2924121 |11.78555 -12.8478 |43.16236
Save Bitmap | Lock | Save Bitmap Lock

FIGURE 6.2: Results of LoG filter with o, = 1.6 and o, = 2.8

Chapter 6. Tests and validation 62

Detailed view] Interactive tracking] Cracks | Detailed view] Interactive tracking] Cracks |
[Meden] [T - |
Save Bitmap | Lock Save Bitmap | Lock

FIGURE 6.3: Results of LoG filter with o, = 2.8 and o, = 1.6

This deformation is normal, it appears because of the kernel (see figure 5.6). Even if the blobs
aren’t represented in the picture as they really appear on the record, the Laplacian of Gaussian
is an image-processing function that doesn’t take into account this fact. It detects the blobs

independently of their shape.

Chapter 6. Tests and validation 63

This test also demonstrates how the o parameter influences the results. It correspond to the
level of the Gaussian blur (low-pass filter) that is applied before the Laplacian operator. The
figures 6.4, 6.5 and 6.6 represent the results of three different o (1.0, 1.6, 2.8). We found that
the best value is 1.6. With 1.0, the low-pass is too ”soft”. It doesn’t cut the low frequencies of
the picture enough which will create issues with the next step of the algorithm (The main goal
is to enhance the blobs and reduce the background to be able to extract them afterward). With
2.8, the low-pass is too ”strong” which makes the small blobs disappear (figure 6.6).

Detailed view | Iteractive tracking | Cracks | Detalled view | interactive tracking | Cracks |
- LoG -
[1&35015 [15.7638 [21:11328 [54.73007
Save Bitmap | Lock Save Bitmap | Lock

FIGURE 6.4: Results of LoG filter with o, = 1.0 and o, = 1.0

Chapter 6. Tests and validation

64

Detailed view | Interactive tracking | Cracks | Detailed view | Interactive tracking | Cracks |
[Medan -] [T - |

[¢.485912 [16.37881 3774425 [132.3059

Save Bitmap | Lock Save Bitmap | Lock

FIGURE 6.5: Results of LoG filter with o, = 1.6 and o, = 1.6

65

Chapter 6. Tests and validation
Detailed view l Interactive tracking] Cracks | Detailed view l Interactive tracking] Cracks |
Median oG
-5.350028 |27.96467 -13.35247 |45.07377
Save Bitmap Lock Save Bitmap | Lock

FIGURE 6.6: Results of LoG filter with o, = 2.8 and o, = 2.8

The red square shows small blobs that almost disappear due to the Gaussian low-pass filter.

We decided to take a value of 1.6 for o, and o, for all the others tests.

Chapter 6. Tests and validation 66

6.2.1 Blobs detect algorithms

The implemented algorithms works for all the records. This section presents the different results

and how the parameters affect them.

BRI algorithm

This algorithm detects the probe lost of focus (figure 6.7) and cracks (figure 6.8). The only
parameter is the threshold value. This value is almost the same for every record and is around

400. If the value is to high, the algorithm will be to sensitive and detect to much blobs (figure
6.9).

Detailed view | Interactive tracking | Cracks | Detailed view | Interactive tracking | Cracks |
[ed=n A2 [BaBobs +
|—244.5€1E 278.5878 0.001 0.998002

Save Bitmap | Lock Save Bitmap | Lock

FIGURE 6.7: BRI Algorithm - lost of focus detection

Chapter 6. Tests and validation

Detailed view | Interactive tracking | Cracks |

[edizn K
[2.95458 [72.86931

Save Bitmap | Lock

Detailed view | Interactive tracking] Cracks |

BriBlobs [
|D. 001 0.993002
Save Bitmap | Lock

67

F1GURE 6.8: BRI Algorithm - cracks detection

Chapter 6. Tests and validation 68

Detailed view] Interactive tracking | Cracks | Detailed view | Interactive tracking | Cracks |
[21.45513 [23.29766 o001 [o.998002
Save Bitmap | Lock Save Bitmap | Lock

W)

— ey

ARV

-
iy
L |
By
3"
]
&

F1GURE 6.9: BRI Algorithm - too sensitive threshold

In the figure 6.7 we can see that it miss a blob filling function. This could be a possibility of

further development.

Chapter 6. Tests and validation 69

6.2.2 LoG algorithm

As explained before, the o, and o, parameters influence the Gaussian low-pass filter. For these
tests, we chose a value of 1.6 for both of them. The other parameter is the threshold value
used in the adaptive threshold algorithm (see chapter 5 for more information) and represent
the sensitivity of this algorithm. The user has to be careful that the grooves aren’t detected as
blobs. The figure 6.10 shows the LoGBlobs with a threshold value of 2.4. We can see that the

algorithm detects a groove as a blob.

Detailed view | Interactive tracking] Cracks] Detailed view] Interactive tracking] Cracks I
e LoGBlobs ¥
-20.35106 |22.48976 0.001 0.998002
Save Bitmap | Lock Save Bitmap | Lock

1ir

L]

N
a
.

‘-
 —
—
—
——
—
P—y
-
"y
| g
L
| —

X 5f o

]

FIGURE 6.10: LoG Algorithm - Too sensitive threshold

This algorithm is used to detect all kind of blobs, cracks and probe’s lost of focus. However
the results weren’t good enough to let only this algorithm handle the complete blob detection

process.

Chapter 6. Tests and validation 70

The figure 6.11 shows the detected blobs on a part of the record 287881 with a threshold value
of 2.8.

Detailed view l Interactive tracking I Cracks Detailed view l Interactive tracking I Cracks
== - [LoGBobs]
Save Bitmap | Lock Save Bitmap | Lock

FI1GURE 6.11: LoG Algorithm - Threshold = 2.8

We can see that the detected blobs are a little bit bigger than in the record’s picture. This is
due to the algorithm (averaging filter). We decided that it was better to detect blobs bigger

than they are instead of smaller.

Chapter 6. Tests and validation 71

6.2.3 Adaptive threshold algorithms

AdaptThreshVal

This algorithm is very powerful to detect the blobs (figure 6.12). However it fails when it comes
to detect cracks (figure 6.13) and probe’s lost of focus (figure 6.14). The use of an adaptive
threshold makes it very strong on every kind of record. Moreover with the new version, the
computation time is reduced by a factor 6 (figure 6.15). The only parameter of this function is

the threshold. It modifies the sensitivity of the algorithm.

Detailed view l Interactive tracking | Cracks | Detailed view l Interactive tracking | Cracks |
Medan ~ [Adapt Thresiid|
Save Bitmap | Lock Save Bitmap | Lock

FIGURE 6.12: Adaptive threshold Algorithm (value)

Chapter 6. Tests and validation 72

Detailed view l Interactive tracking] Cracks | Detailed view l Interactive tracking | Cracks |
Median v Adapt Thres| +
-23.98373 |68.44524 0.001 0.558002
Save Bitmap | Lock Save Bitmap | Lock

FIGURE 6.13: Adaptive threshold Algorithm (value) - Cracks

Chapter 6. Tests and validation 73

Detaied view] Interactive tracking] Cracks | Detailed view I Interactive tracking] Cracks |
Median h [Adapt Thresiid
-288 4986 |229 602 0.001 0.9928002
Save Bitmap Lock Save Bitmap Lock

FIGURE 6.14: Adaptive threshold Algorithm (value) - Lost of focus

The figure 6.15 shows a comparison between the computation time of this algorithm. On the
left, the equation 4.5 was used and on the right, the equation 4.6 was used. The top images
are the computation for 3 rings and the bottom one are for 6 rings. We can see that the new

algorithm is 6 times faster.

FIGURE 6.15: Adaptive threshold Algorithm (value) - Computation time for 3 and 6 rings

Chapter 6. Tests and validation 74

AdaptThreshDeriv

This algorithm detects the edge of the blobs (figure 6.16). It can be used in combination with
the AdaptThreshVal algorithm to circle the blobs in order to be sure the detected blobs are

big enough. Without any other algorithm, this function is useless because it doesn’t fill the blobs.

Detailed view l Interactive tracking] Cracks | Detailed view l Interactive tracking] Cracks |
Median b [Adapt Thresihd
-10.3618 |36.73809 0.001 0.358002
Save Bitmap | Lock Save Bitmap | Lock

FIGURE 6.16: Adaptive threshold Algorithm (derivative)

Chapter 6. Tests and validation 75

The figure 6.17 shows the detected blobs with the two adaptive threshold algorithms. We can
see the result is almost perfect. However some blobs aren’t detected completely and these func-

tions do not detect the cracks and probe’s lost of focus.

Detailed view l Interactive tracking] Cracks I Detailed view l Interactive tracking] Cracks I
Median b Blaobs b
-12.50954 |29.21726 0.001 0.998002

Save Bitmap | Lock Save Bitmap | Lock

FIGURE 6.17: Adaptive threshold Algorithms

Chapter 6. Tests and validation 76

6.2.4 Complete blobs cleaning algorithm

As we expected, the implemented cleaning algorithm is totally independent of the record type.
We decided to present some results on different records with it. The figure 6.18 shows a perfect

cleaning of the image. The big gray area are the biggest blobs that we set to zero.

Detaied view | nteractive tracking | Cracks | Detated view | interacte tracking | Cracks | Detaied view | nteractive tracking | Cracks |
Medion [ol [Bobean JJ

87471 [6318947 0 1895526 [35.08513

Save Bitmap | Lock L Save Bitmap | Lock

FIGURE 6.18: Blob Clean v2 result

Moreover, the cubic spline interpolation won’t create clicks in the final audio file like the linear

interpolation.

Chapter 6. Tests and validation 77

However, the new blobs cleaning function isn’t perfect all the time. The figure 6.19 shows a
part of the record 287881 with uncleaned blobs. This is due to the fact that some blobs were

not detected in full, creating strange points during the interpolation. This results in uncleaned
blobs even if most of it was detected.

Detailed view | Iteractive trackeng | Cracks |

Median b
-14.19896 |426727

Detaied view | Interactive tracking | Cracks | Detailed view | Interactive tracking | Cracks |

BiobOlean =
-14.1469 |21.64857

Save Bitmap | Lock Save Bitmap | Lock

FIGURE 6.19: Blob Clean v2 result 2

The figure 6.20 shows the points value under the vertical red line in the right picture of figure

6.19. The green line represent the points’ values before the cleaning and the red one after the

cleaning.

— Line0 —— Line0d
80

60 +

40 +

Helght (um)
° 8
.
[
=]
—
=
—

TP Y PN

-40

o 100 200 300 400
Fiber

500 600 700 800

FIGURE 6.20: Blob Clean v2 result 2 - graphic

We can see that only one undetected points can mess up the blob cleaning process. As explained
in chapter 4 a blob is a region that differ in properties compared to areas surrounding it. If the

blob doesn’t have constant properties, it might not be completely detected.

Chapter 6. Tests and validation 78

This fact also takes into account the blobs represented in figure 6.21. Those blobs are scratches

that destroyed the record’s wax surface.

Detailed view | Interactive tracking | Crackcs | Detailed view | Interactive trackcing | Crackcs |
[BiobClean ~] BobClean v
[3293678 [35.14407 3863663 [23.43087
Save Bitmap | Lock | Save Bitmap | Lock
y |

FIGURE 6.21: Blob Clean v2 result 3 - undetected blobs

We can’t do anything about those scratches, however for the small undetected blobs, the outlier
function in the PRISM software will handle it. It takes the groove’s points and compares the
mean value with all the groove’s pixels. If a pixel differ from more than the specified value, the
pixel is considered as an outlier and is deleted. The mean is computed again and so on till no

pixel differs or until the minimum number of pixel left is reached (parameter that can be set in
the GUI).

Chapter 6. Tests and validation 79

Computation time

We decided to test the computation time of every algorithm. The time displayed represents the
real processing time of the function. We changed the code in order to bypass the median filter

and the cleaning process. It was taken from the console of the GUI (Clean Image).

Algorithm 3 rings | 6 rings | 9 rings
BRI 11.58 sec | 23.46 sec | 35.88 sec
LoG 42.46 sec | 93.98 sec | 136.58 sec

AdaptThreshVal 2.25 sec | 4.82sec | 7.22 sec
AdaptThreshDeriv | 2.93 sec | 6.15 sec | 9.47 sec

TABLE 6.1: Computation time

We can see that the computation time is in o(n) with n representing the number of rings
to process. The LoG takes more time to compute because of the convolution operator. An
improvement would be to implement these function with concurrent programming in order to

use all processor’s cores.

When the user selects more than one algorithm, the total process time is the sum of each algo-

rithm’s computation time.

Note that in the final code, the median filter and cleaning process are included in the cleaning

time displayed in the GUI’s console.

Chapter 6. Tests and validation 80

6.

2.5 Replacement of muted part with ”silence”

For this test, only the audio file was analyzed in Sound Forge software.

This test was performed on the record 287881 only, because it is the only one that had lost of

focus data creating big blobs and muted part in the audio. In the next figures, we shows the

audio waveform with and without this function. When we ear the audio file with the muted

part, it s very difficult to understand what’s on the record because the sound is always cut.

This is corrected by this algorithm. It improves the final audio quality of the file because the

noise level is constant. During this test we discovered that this function could create clicks at

the border of the muted part. We didn’t manage to correct this because of the time constraint.

R

ecord 287881

. 287881-FULL1_110_1750_24_36000_400_1 .pri0-0-BN30-E0.2-BK100-FL200-0UTO0.5-5-NOCORR-D1-44100-36000.wav =

® F o000 omeoz ooooos . 000006 000008 0000d0 om0 T

.0
-Inf.

.0

B 287381-FULL1_110_1750_24 6000 _4! D _1.pri0-0-BN30-E0.2-BK100-FL200-OUTR 5-5- CORR-D1-44100-36000 wav *

8 4 00:00:00

£.0

|D0:00:04 |00:00:08 R . (D0:00:08

|00:00:10 § X \DD:00:12

6.0

ol [=] ¢ [

4 Bl @ P> -8 Rate:0.00 ——o>

FIGURE 6.22: Record 287881 - Replacement of muted part with ”silence”

Chapter 6. Tests and validation 81

6.2.6 Audio extraction

For all the figure of audio waveform, the top one is without any blob clean function, the middle
one is with the previous blob clean function and the bottom one is with the new blob clean
algorithm. All the audio files were extracted with the same tracking to not falsify the results.
We compared the audio waveform and the frequencies spectrum of the available records. Those
records are all vertically cut. We applied a low pass filter in order to delete the frequencies

higher than %)

FIGURE 6.23: Records 287700, 287701, 287860.2, 287881

Chapter 6. Tests and validation 82

Record 287700

This record contains a lot of cracks (figure 6.24, the red squares represent them). These cracks

make the audio quality very bad. Moreover, the noise level on the record is high.

— “K“

FIGURE 6.24: Record 287700 - cracks

On the audio waveforms (figure 6.25) we can see that the extracted file has a bad quality.

8 4 oo

<0

-inf.

<0

[#ll=] «
KM E P g RaE=00 o 100:00:19.985

<01
g

<01

] »

=] < [
MO E B Ratm000 b 00:00:20.034

FIGURE 6.25: Record 287700 - waveforms

Chapter 6. Tests and validation 83

In the frequency spectrum (figure 6.26) we can see that the new algorithm is quieter than the

previous one. There are less clicks due to the blobs and interpolation.

FIGURE 6.26: Record 287700 - frequency spectrum - Blue = no blobs clean / Green = old
blobs clean / Yellow = new blobs clean

We can see the effect of the sample frequency of the disc (low pass filter around 4.5kHz).

The noise level and cracks make this record almost inaudible. New tools may have to be

developed to restore these kind of recordings.

Chapter 6. Tests and validation 84

Record 287701

The figure 6.27 shows the waveform of the three different audio file. The bad quality of the

audio file made this record not understandable.

=0

MObE B g Ram000 ———oh

<0

00:00:00.000

k.|

0

=
MM B e R0 b 00:00:21.224

I 287701 110_1800_36_18000_400 1. pri5-0-BN30-E0.2-BK100-FL200-OUTO.5-5-D1-44100-18000.wav
1

6 Elowe oo geeoss . eaees poooss oeosy s %bw oo oeoss o

<0
k.|

40

FIGURE 6.27: Record 287701 - waveforms

We can see that the first waveform contains a lot of clicks due to the cracks, dust and dirt
particles present on the record. The new algorithm reduces the number of clicks present in
the audio file. However some of them are still present (see the Remaining clicks section of this

chapter). The figure 6.28 shows the frequencies’ spectrum of these audio files.

FIGURE 6.28: Record 287701 - frequencies’ spectrum - Blue = no blobs clean / Green = old
blobs clean / Yellow = new blobs clean

We can see the new algorithm is quieter than the previous blob clean function (around 6db).

Chapter 6. Tests and validation 85

Record 287881

Alexander Graham Bell is counting on this record. He was testing the recording of numbers. It
is the only record that is audible and understandable. The figure 6.29 shows the waveform of

the three different audio files.

7881-noClean way * =
I z87881-noCl &

6 4 oo

)L 00

I 287881-0ldC =@

01
1,
0

8 4 oo

50
ok,

50

B 28788 newCleannay ==
I

8 loowom eeoom pows pomwse pows eowe o posn ws peews oows goos

0
o,

0

FIGURE 6.29: Record 287881 - waveforms

Like for the previous records, the new algorithm reduces the number of clicks present. The
figure 6.30 shows the frequency spectrum of these audio files. The new algorithm is 7 db quieter

than the previous one on this record.

FIGURE 6.30: Record 287881 - frequency spectrum - Blue = no blobs clean / Green = old
blobs clean / Yellow = new blobs clean

Chapter 6. Tests and validation 86

Remaining clicks

After all the test we proceeded, we found that some clicks appear due to the tracking. Every
time the groove gets from the bottom to the top of the picture, it creates a click (figure 6.31).
The others clicks are due to some undetected blobs. A possible improvement to the PRISM

software could be to develop a new tracking tool adapted to this kind of records.

8 I 00:00:00 .) 00:00:02 , , | 00:00:04) , 00:00:08)) ,00:00:08

B 237701_110_1800_36_18000_400_1.pri5-0-BN30-E0.2-BK100-FL200-0OUT0.5-5-D1-44100-18000.wav
[

& I DO:{\CI:D? : : IDC!:O!):D% ,) lDD:DD:D“l : , J{)C!:{)C):{,\f:} , : lﬁD:{)D:OQ

FIGURE 6.31: Record 287881 - zoom, remaining clicks

Noise

Those records are the nosiest that Carl Haber’s team dealt with. The recording devices and
records’ deterioration are responsible of this. However we didn’t apply any post processing
algorithm such as noise reduction, clicks removal, etc... This part is done by professional audio
reconstitution engineers and all the archives want a clean version (no post-treatment) of the
record. The only record that is audible and understandable is the 287881. On this record,

Alexander Graham Bell tested the recording of numbers.

Chapter 6. Tests and validation 87

6.2.7 Conclusion

These tests demonstrate that the new blobs clean function works better on all the available
recordings. The new interpolation function helps to avoid a lot of clicks in the final audio file.

However, there is still a need for improvement. Some blobs are still undetected by the function.

The Laplacian of Gaussian with two different o didn’t work as we expected. We decided to let

the function in the source code and in the GUI if it can help for a further development.

The function to replace the muted parts with background noise worked fine expect for the
artifacts at the border of these parts. We didn’t manage to correct this. The solution would be
to create audio samples in the border of the muted part with a spline interpolation (same class
used for the blobs cleaning) to create a smooth transition between the real audio samples and

the inserted background noise samples.

Chapter 7

Further developments

At the end of this project, some parts needed more consideration in order to improve the quality

of results. This chapter presents those points in order to give ideas for further developments.

7.1 Blob detection

The blob detection is a very hard subject due to the large variety of blobs that can appear on
the recording. Even if the new algorithm detects more blobs and is stronger than the previous
one due to the adaptive thresholds and implemented algorithms, some blobs are still undetected
or not completely detected. This results in clicks and noise in the audio file. A improvement
would be to continue the search of new algorithms to detect blobs in order to detect all the
blobs. It might be interesting to implement a blob detection function that performs multiple

passes over the record. For every pass the cleaning result is used to detect the remaining blobs.

As presented in the chapter 6, the computation time can be long if the user processes a lot of
rings at the same time. This is due to the convolution operator that is used in almost all blob
detection algorithms. An improvement would be to modify the convolution function by using

concurrent programming in order to reduce the computation time.

7.2 Tracking

As explained in the chapter 6, some remaining clicks come from the tracking. It would be useful
to develop a new tracking tool adapted to this kind of record. This would lead to a better audio

quality and give the possibility to analyze the new results to find other improvements.

89

Chapter 7. Further developments 90

7.3 Replacement of muted part with ”silence”

During the tests’ procedures we discovered that this function can create artifacts resulting in
audible clicks in the border of the muted parts. This is due to the jump between the last sample
value of the sound and the first sample value of the background noise. This can be corrected by
using a spline interpolation between these values to create a smooth transition. Unfortunately

we didn’t manage to correct this before the end of the project.

Another improvement would be to try to interpolate the biggest blobs by taking into account
the sound before and after the blobs instead of replacing it with the background noise. It would
be possible by interpolating samples to reproduce the frequency spectrum before the blobs and

by creating a smooth transition to the frequency spectrum of the audio after the blobs.

7.4 Cracks

As explained in the chapter 6, the cracks create clicks and make the tracking difficult. A function
that try to correct the shift of the image before and after the crack could reduce the number of

clicks.

Chapter 8

Conclusion

The goal of this project was to implement new tools and features to PRISM in order to deal with
the records of the Volta Laboratory. The main objective was to develop a new blobs detection
and cleaning function with stronger algorithms taking no parameter as input. After a lot of tests
and analysis it appears that it wasn’t possible to design such an algorithm. We implemented
different blobs detection algorithms that are stronger than the previous one due to the adaptive
thresholds. The new interpolation function (cubic spline interpolation) suits perfectly to this

project and the results are, as expected, better than with a linear interpolation.

The results demonstrates that the audio quality is improved with the tools we developed and
that the number of clicks present in the audio file is reduce. However as explained in chapter
7, there are some points that need more analysis in order to obtain the best quality from the

recordings of Alexander Graham Bell.

During this project we had the opportunities to apply many different subjects learned during our
Bachelor formation in the College of Engineering and Architecture of Fribourg. The materials
form the lessons of signal processing, image processing, programming, statistic and applied
physics were very useful to complete this project and my previous work on Visual Audio helped

me to quickly understand the problematic.

I learned a lot about data analysis, image processing, audio processing, signal processing and

project management during this project.

Finally this experience in the Lawrence Berkeley National Laboratory was incredible and work-
ing on this historical subject was very rewarding. Beside the work, I had the opportunity to
discover a new country and culture. I met a lot of people and had the chance to improve my

English skill. T highly recommend this experience to everyone.

91

Appendix A

Parameters of the new BlobClean

function

The goal of this appendix is to resume all the BlobClean v2 parameters. For more information

about these, please refer to the chapter 4.

The figure A.1 shows the different parameters that are available with the new BlobClean func-
tion.

Blob Clean v2 Blob Clean v2 Blob Clean v2
[Enable [Gen Blob Img [Enable [Gen Blob Img [Enable [Gen Blob Img
BRI Thresh | LoG Fiter | Adapt Thresh | BRI Thresh LoG Fiter | Adapt Thresh | BRI Thresh | LoG Fiter Adapt Thresh
Threshold | 400 SigmaX | 16 Thresh | 2.2 Threshval | 22 [Blob Img
[Enable

SigmaY [15 [~ Deb

o - Threshderiv [35 |_ Bloblimg
[Enable [Blob Img [Enable [Blob Img [Enable

FIGURE A.1: BlobClean v2 GUI

The top right check box (Enable) enables the BlobClean v2 function. However each algorithm
has to be enable in the correct tab.

The top left check box (Gen Blob Img) give the possibility to display in the detailed view the
general blobs images. In each tab, a similar check box (Blob Img) is available and displays the

blob image of the corresponding algorithm.

After the test of the LoG with two different sigma it appears that this function should be used

with o, = oy to obtain the best results

93

Appendix A. Parameters of the new BlobClean function 94

Algorithm Parameter | Description

BRI Thresh | Threshold Threshold value applied to the BRI file to detect lost of focus
and cracks.

LoG Filter SigmaX Sigma for the x axis. Used to create the LoG kernel

LoG Filter SigmaY Sigma for the y axis. Used to create the LoG kernel

LoG Filter Thresh Sensibility of the algorithm, big value = less sensitive, small
value = more sensitive

AdaptThresh | Thresh val Sensibility of the algorithm, big value = less sensitive, small
value = more sensitive, represents the number of standard
deviation allowed

AdaptThresh | Thresh deriv | Sensibility of the algorithm, big value = less sensitive, small

value = more sensitive, represents the number of standard
deviation allowed

TABLE A.1: Blob Clean v2 function’s parameters

Some parameters are hidden in the menu option/BlobClean2 - more parameters (figure A.2).

Blob Clean 2 - Mare parametersl. = | E ﬂhJ

Cancel

LoG Filter

5

3m

Kernel size

Nb points

Adapt Thresh
Nb points val 201

Nb points deriv 201

FicUre A.2: BlobClean v2 - More parameters

Algorithm | Parameter Description

LoG Filter Kernel size Size of the LoG kernel. Shouldn’t be used because the kernel
size is computed automatically in the code

LoG Filter Nb points Number of points taken when computing the adaptive
threshold (use a big value)

AdaptThresh | Nb points val Number of points taken when computing the adaptive
threshold on the value (use a big value)

AdaptThresh | Nb points deriv | Number of points taken when computing the adaptive

threshold on the derivative (use a big value)

TABLE A.2: Blob Clean v2 function’s parameters 2

Bibliography

1]

[10]

[11]

Video Interchange. Vintage audio history, July 2013. URL http://www.

videointerchange.com/audio_history.htm.

Wikipedia The Free Encyclopedia. Phonograph, June 2013. URL http://en.wikipedia.
org/wiki/Phonograph.

Leslie J. Newville. Development of the Phonograph at Alexander Graham Bell’s Volta
Laboratory. Project Gutenberg eBook, September 2009.

Patrick Feaster. A Discography of Volta Laboratory Recordings at the National Museum of
American History. PDF document, March 2012.

That Eric Alper. Photo: Close-up of a record stylus on the grooves of
a vinyl record, July 2013. URL http://wuw.thatericalper.com/2013/01/06/

photo-close-up-of-a-record-stylus-on-the-grooves-of-a-vinyl-record.

Wikipedia The Free Encyclopedia. Noise (audio), July 2013. URL http://en.wikipedia.

org/wiki/Noise_(audio).

Wikipedia The Free Encyclopedia. Blob detection, July 2013. URL http://en.wikipedia.
org/wiki/Blob_detection.

Tobias Muller. New probe for depth estimation of records: Probe. Bachelor thesis, ETIA-FR,
LBNL, 2010.

Adrien Nicolet. New probe for depth estimation of records: Software. Bachelor thesis,
EIA-FR, LBNL, 2010.

Apple. Performing convolution operations, July 2013. URL http://developer.
apple.com/library/ios/#documentation/Performance/Conceptual/vImage/

ConvolutionOperations/ConvolutionOperations.html.

Wikipedia The Free Encyclopedia. Kernel (image processing), June 2013. URL http:

//en.wikipedia.org/wiki/Kernel_(image_processing).

95

http://www.videointerchange.com/audio_history.htm
http://www.videointerchange.com/audio_history.htm
http://en.wikipedia.org/wiki/Phonograph
http://en.wikipedia.org/wiki/Phonograph
http://www.thatericalper.com/2013/01/06/photo-close-up-of-a-record-stylus-on-the-grooves-of-a-vinyl-record
http://www.thatericalper.com/2013/01/06/photo-close-up-of-a-record-stylus-on-the-grooves-of-a-vinyl-record
http://en.wikipedia.org/wiki/Noise_(audio)
http://en.wikipedia.org/wiki/Noise_(audio)
http://en.wikipedia.org/wiki/Blob_detection
http://en.wikipedia.org/wiki/Blob_detection
http://developer.apple.com/library/ios/#documentation/Performance/Conceptual/vImage/ConvolutionOperations/ConvolutionOperations.html
http://developer.apple.com/library/ios/#documentation/Performance/Conceptual/vImage/ConvolutionOperations/ConvolutionOperations.html
http://developer.apple.com/library/ios/#documentation/Performance/Conceptual/vImage/ConvolutionOperations/ConvolutionOperations.html
http://en.wikipedia.org/wiki/Kernel_(image_processing)
http://en.wikipedia.org/wiki/Kernel_(image_processing)

Bibliography 96

[12]

[13]

[14]

Wikipedia The Free Encyclopedia. Standard deviation, July 2013. URL http://en.

wikipedia.org/wiki/Standard_deviation.

Marquette University (Author unknown). Log filter, July 2013. URL http://academic.
mu.edu/phys/matthysd/web226/Lab02.htm.

Wikipedia The Free Encyclopedia. Gaussian filter, July 2013. URL http://en.wikipedia.

org/wiki/Gaussian_filter.

MIPAV wiki. Edge detection: Zero x laplacian, July 2013. URL http://mipav.cit.nih.
gov/pubwiki/index.php/Edge_Detection:_Zero_X_Laplacian.

Alain Boucher. Vision par ordinateur - laplacien de gaussienne, July 2013. Lesson’s slides.

University of Edinburgh. Adaptive thresholding, July 2013. URL http://homepages.inf.
ed.ac.uk/rbf/HIPR2/adpthrsh.htm.

Wikipedia The Free Encyclopedia. Interpolation, June 2013. URL http://en.wikipedia.

org/wiki/Interpolation.

Wikipedia The Free Encyclopedia. Runge’s phenomenon, June 2013. URL http://en.

wikipedia.org/wiki/Runge’27s_phenomenon.

Wikipedia The Free Encyclopedia. Piecewise, July 2013. URL http://en.wikipedia.

org/wiki/Piecewise.

Wikipedia The Free Encyclopedia. Spline interpolation, July 2013. URL http://en.

wikipedia.org/wiki/Spline_interpolation.

Topher Lee. Creating a wav (riff) file, July 2013. URL http://www.topherlee.com/

software/pcm-tut-wavformat.html.

http://en.wikipedia.org/wiki/Standard_deviation
http://en.wikipedia.org/wiki/Standard_deviation
http://academic.mu.edu/phys/matthysd/web226/Lab02.htm
http://academic.mu.edu/phys/matthysd/web226/Lab02.htm
http://en.wikipedia.org/wiki/Gaussian_filter
http://en.wikipedia.org/wiki/Gaussian_filter
http://mipav.cit.nih.gov/pubwiki/index.php/Edge_Detection:_Zero_X_Laplacian
http://mipav.cit.nih.gov/pubwiki/index.php/Edge_Detection:_Zero_X_Laplacian
http://homepages.inf.ed.ac.uk/rbf/HIPR2/adpthrsh.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/adpthrsh.htm
http://en.wikipedia.org/wiki/Interpolation
http://en.wikipedia.org/wiki/Interpolation
http://en.wikipedia.org/wiki/Runge%27s_phenomenon
http://en.wikipedia.org/wiki/Runge%27s_phenomenon
http://en.wikipedia.org/wiki/Piecewise
http://en.wikipedia.org/wiki/Piecewise
http://en.wikipedia.org/wiki/Spline_interpolation
http://en.wikipedia.org/wiki/Spline_interpolation
http://www.topherlee.com/software/pcm-tut-wavformat.html
http://www.topherlee.com/software/pcm-tut-wavformat.html

	Declaration of Authorship
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 History
	1.2 Context
	1.3 Report's structure

	2 Fundamentals
	2.1 Discs & Cylinders
	2.2 Extracting sound from the picture of a recording
	2.3 Audio
	2.3.1 Noise
	2.3.2 Clicks

	2.4 Blobs

	3 Objectives
	3.1 Objectives
	3.2 Tasks

	4 Analysis
	4.1 PRISM Software
	4.1.1 General information
	4.1.2 Opening process of a recording
	4.1.3 Blob Clean function

	4.2 Convolution in image processing
	4.2.1 General information
	4.2.2 Normalization
	4.2.3 Border pixels

	4.3 Statistics
	4.3.1 Standard deviation

	4.4 Blobs Detection
	4.4.1 Laplacian of Gaussian
	4.4.2 Adaptive threshold

	4.5 Interpolation
	4.5.1 General information
	4.5.2 Linear interpolation
	4.5.3 Polynomial interpolation
	4.5.4 Spline interpolation

	4.6 Wav format
	4.7 Recordings
	4.7.1 Record 287700
	4.7.2 Record 287701
	4.7.3 Record 287881

	5 Design and implementation
	5.1 Blobs Clean
	5.1.1 Blobs detection
	5.1.2 Blobs correction
	5.1.3 BlobClean v2 - Implementation
	5.1.4 GUI

	5.2 Replacement of muted part with "silence"
	5.2.1 Algorithm

	6 Tests and validation
	6.1 Tests description
	6.1.1 Replacement of muted part with "silence"
	6.1.2 Audio extraction
	6.1.3 Tracking

	6.2 Results
	6.2.1 Blobs detect algorithms
	6.2.2 LoG algorithm
	6.2.3 Adaptive threshold algorithms
	6.2.4 Complete blobs cleaning algorithm
	6.2.5 Replacement of muted part with "silence"
	6.2.6 Audio extraction
	6.2.7 Conclusion

	7 Further developments
	7.1 Blob detection
	7.2 Tracking
	7.3 Replacement of muted part with "silence"
	7.4 Cracks

	8 Conclusion
	A Parameters of the new BlobClean function
	Bibliography

